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Abstract

How should researchers select sites in a multi-site experiment under uncertainty
about the deployment population? I formulate the problem of experimental site
selection as an optimal transport problem, developing methods to minimize down-
stream estimation error by choosing sites that minimize Wasserstein distances be-
tween population and sample covariate distributions. I develop new theoretical
upper bounds on PATE and CATE estimation errors, and show that these different
objectives lead to different site selection strategies. I extend this approach by using
Wasserstein Distributionally Robust Optimization to guard against distribution
shift when observed sites may not represent the target population, and develop a
novel, data-driven procedure for uncertainty radius selection. Simulation evidence,
and a reanalysis of a randomized microcredit experiment in Morocco (Crépon et
al.), show that these methods outperform randomization and alternative optimiza-
tion methods i) for moderate to large size problem instances ii) when covariates are
moderately informative about treatment effects, and iii) under induced distribution
shift.
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Notation

Symbol Definition

Notes

Sets and Populations

Universe of all potential experimental sites
Observed subpopulation, P C &

Selected experimental sites, S C P

Number of candidate sites, N = |P)|
Maximum sites to select (budget constraint)
Dimension of covariate space

S xz g

Covariates and Treatment Effects

X, U Observed, unobserved covariates

T Covariate vector for site 7

Px, Sx Empirical covariate distributions

Y (1),Y(0) Potential outcomes under treatment/control
7, 7(x) Individual treatment effect, CATE

il Population Average Treatment Effect
75, 79(x) Sample estimates of PATE, CATE
Error Measures

MSEpateg  Mean squared error of PATE estimate
PEHE [ [TF (@) = 75(2))2da

L Lipschitz constant

M1, M2 Sensitivity parameters

o3 Irreducible estimation error

Optimal Transport

W,(P,Q)  p-Wasserstein distance between P, @
Tij, T Transport plan entries, optimal plan
c(x,y) Transport cost function

Ou, Dirac measure at x;

Distributionally Robust Optimization

P Robustness radius

B(Px,p) Wasserstein ambiguity set

S®) Site selection at iteration ¢

QW Adversarial distribution at iteration ¢
QW Set of adversarial scenarios up to iteration t
€ Convergence tolerance
Optimization Variables

S; Binary site selection indicator

Tk MILP transport variables

[k Adversarial distribution weights

ity Bij Two-stage transport variables

Target population

Population size

c(z,y) = llz =yl

Uncertainty budget

Sz:H{Z GS}

Population site j to

selected site k
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Symbol Definition Notes

Simulation and Evaluation

n Unmeasured confounding (simulation) Distinct from 7,17,
R? Treatment effect variance explained

J(S1, S) Jaccard similarity Igiggzl

Other

Z; Treatment assignment indicator

C,r Partition, cluster representatives

Lip, (R%) Class of 1-Lipschitz functions

1 Introduction

1.1 Learning from Multi-Site Experimental Studies

Multi-site experimental studies have become central to causal inference across a number of
disciplines, as they allow researchers to generate transportable, externally valid estimates
of treatment effects that can inform policy-making, theory development, and testing [24,
44).

Across political science, economics, public health, and climate science, multi-site ex-
perimental studies are supported by international funding bodies with a view to providing
generalizable insights.

In each of these multi-site experimental designs, researchers faced the following prob-
lem: given a finite budget and a universe of potential experimental sites, where should
they actually conduct an experiment, given their downstream objective of running a valid
causal inference experiment that has the smallest possible error estimate?

Further, what should researchers do when deployment populations differ from their
observed populations? How should they take into account their limited information
about target populations? And how should their decision change when they care about
heterogeneity, and ensuring that diverse populations are included in the study sample?

Distribution shift is fundamental problem across a variety of statistical contexts:
how should researchers account for the routine fact that the data they have collected
may not accurately represent the population they are in fact interested in [89, 81, 13,
31, 61]7 Distribution shift is closely related to the problem of external validity: how do
we ensure that our estimates are valid when transported to other populations than the
specific sample we formed our estimates on [32, 78, 39]?

For the experimental planner, distribution shift can take on a number of concrete
forms. Feasible experimental sites may differ systematically from the populations on
which the researcher wishes to experiment [4]. Population characteristics may change in
the time period between study planning and implementation [84, 13]. Observed covari-
ates may imperfectly capture true population characteristics, and minority groups may
be systematically underrepresented in selected experimental units [88, 59]. In political
science, differences in institutional quality [25], trust in institutions [34], rural-urban mix
[40], and racial and ethnic context [7, 56], can each be the source of substantive differences
in the transportability of conclusions from one context to another.

A goal of recent research in site selection is to choose experimental locations that are,
in relevant sense, robust to distribution shift, or designed with external validity in mind

bt
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[53, 49, 77]. There a number of different ways we might want to formalize this idea in
practice, using different statistical and theoretical tools.

Wasserstein Distributionally Robust Optimization (DRO) is a set of methods
developed in operations research that find solution sets with guarantees against worst-case
performance within the radius of a given solution [15, 50, 70, 21, 20, 23]. Radius-based
approaches to robust optimization seek to guarantee that we provide insurance against
our choices being ‘wrong’ within a certain neighborhood of our empirical solution [72,
42]. Instead of asking, under what assumptions can we transport a valid conclusion from
context A to context B, these approaches ask, what solution would we pick if we wanted
it to still hold for any context that was p-close to the context we actually saw?

These methods build on the optimal transport literature, which is an elegant body
of applied mathematics that studies the abstract problem of moving (probability) mass
from one location to another [94, 96, 16].

1.2 Methodological Contributions
1.2.1 Optimal Transport and the Site Selection Problem

I use optimal transport theory to formulate the PATE and CATE site selection
problems. Optimal transport is a rich body of applied mathematics with many possible
applications in causal inference and machine learning [95, 83, 79]. Optimal transport is
concerned with the efficient shifting of mass between distributions, and gives rise to
an intuitive notion of distance between distributions, the Wasserstein distance, which
measures the shortest-cost transport distance between two distributions. Many problems
in causal inference can be formulated as optimal transport problems [54], and this is a
rich vein of current and ongoing work [92].

I derive new upper bounds on the errors of the PATE and CATE estimator in
terms of Wasserstein distances. By using the tools of optimal transport to analyze
the Mean Squared Error of the PATE estimate, and the Precision in Estimated Hetero-
geneous Effect [57, 85], I derive upper bounds for the PATE and CATE errors in terms
of the Wasserstein distance (Theorem 14 and 15).

These bounds give us intuition about what our substantive goals are when
choosing experimental sites for PATE and CATE estimation. For the PATE,
the goal is to optimally assign every population point to selected sites while balancing
representation costs. This creates an optimal transport assignment where every popula-
tion point is allocated to some selected site, with each selected site serving exactly 1/K of
the population mass. The resulting solution sets trade-off between good representation of
the population centroid, and adequate proximity to outliers. This site selection strategy
that results is akin to balanced sampling in survey methodology [41], where the goal is
to balance on the infinite function class of all 1-Lipschitz functions, which includes linear
functionals as a special case, but also smooth functions with bounded derivatives (see
Appendix D).

For the CATE, the goal is to choose a selection of sites that have good coverage of the
support of covariates. To minimize the downstream error of the CATE, we want good
coverage of the entire covariate space, so that our estimate of the function 7 : X — R is as
accurate as possible everywhere in the support of X'. This turns out to be approximately
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equivalent to optimal stratified sampling (see Appendix D), in which we simultaneously
choose an optimal Voronoi partition of the covariate space, and representative sites from
this partition.

These upper bounds motivate a Mixed Integer Linear Program formulation of
the PATE and CATE selection problems. Because our bounds contain Wasserstein
distance terms, our objective then becomes to choose experimental sites that minimize
the Wasserstein distance between the observed population of experimental sites and the
selected sample of experimental sites, subject to a budget constraint of sites. Wasserstein
distance minimization can be tractably reformulated in terms of Mixed Integer Linear
Programs. These are straightforward to solve using commercial solvers like Gurobi. I
develop software to implement this approach.

Empirical performance These optimization-based methods outperform randomiza-
tion when covariates are sufficiently informative about treatment effects, as I show via
simulation in Section 4.

1.2.2 Site Selection Under Distribution Shift

The observed population of sites may not represent the study population of
interest. When planning experiments, researchers planning multi-site experiments face
several possible sources of distribution shift. Experimental sites available for study may
differ systematically from the target population due to selection bias [4]; site charac-
teristics may evolve between planning and implementation [13]; or covariates may be
measured with error [26].

This is the problem of X-validity, in [48]: when we are interested in generalizing from
experimental samples in target populations: here, the problem is to engineer a sample
that is X-valid with respect to many different populations.

Wasserstein Distributionally-Robust Optimization offers us tools to aid in
decision-making under uncertainty. DRO methods address the problem of distri-
butional uncertainty, when the data set on which we wish to deploy a given solution
differs in distribution from the data set on which we learned a given solution[42, 71, 70].

One approach in the external validity literature is to ask the question, under what
assumptions is my estimate transportable to a given target population? DRO methods
approach the problem of uncertainty about target distribution somewhat differently. The
goal is to construct a set of possible shifts, such that a given solution is guarded against
the worst of these shifts.

I extend the optimal transport framework using Wasserstein distributionally
robust optimization (DRO). Rather than optimizing for the observed distribution,
we can solve a more conservative problem that hedges against a range of plausible pop-
ulation distributions. Formally, our problem becomes:

min  sup W,(P,S
S:|S|<K P'eB(P,p) p( )

where B(P, p) = {P' : W,(P, P’') < p} is an ambiguity set: the collection of all population
distributions within radius p, measured in terms of the Wasserstein distance, around the

7
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empirical distribution. This provides worst-case performance guarantees when the true
population lies within p of the observed data.

I solve the Wasserstein DRO site selection problem using a novel cutting-
plane algorithm that exploits the game structure. Formulating the DRO problem
as a game theory problem directly suggests an algorithm for its implementation: the
Researcher chooses a site selection; the adversary perturbs the observed data, subject to
a budget on how far it can move points; the Researcher observes the adversary’s new
site selection and resolves the problem; and so on until neither the adversary nor the
Researcher change their choices. (See Appendix D.2 for an explicit description of the
equivalence.) Here, the Wasserstein DRO solution is interpretable as Nash Equilibrium
in a game between Researcher and Nature; the algorithm proceeds by ‘playing’ the game
between nature and the Researcher until there are no further moves left. This removes
the need to enumerate all elements of the (infinite) Wasserstein ball; instead, we identify
only the set of adversarial best responses to a given site selection.

I introduce a novel data-adaptive procedure for selecting the uncertainty ra-
dius in Wasserstein DRO problems. A separate technical contribution is the intro-
duction of a novel data-driven calibration method for selecting the robustness parameter
p. A fundamental challenge in applying distributionally robust optimization is choos-
ing an appropriate robustness radius: too small provides insufficient protection against
distribution shift, while too large yields overly conservative selections that sacrifice per-
formance. Theoretical results provide guidance on how to select a robustness radius in the
presence of sampling variability, based on the rate of convergence of empirical measures
[51, 22, 21]. However, it is difficult to formulate a theoretically principled way to choose
a robustness radius in the face of unknown distribution shift beyond sampling variability:
by design, we intend to guard against out-of-sample shifts, and so are limited in how
we can use in-sample data to construct a plausible radius. This is because distribution
shift in the wild induces Knightian Uncertainty [69, 87]: we cannot really know, without
making assumptions, how much shift to guard against.

An alternative approach is to provide the option to guard against shifts that are
benchmarked by the observed variation in the data. My procedure, detailed in Section
3.5, first constructs an empirical Wasserstein grid based on empirical distances in the
covariate data. Intuitively, given any data set, there is a maximum radius beyond which
an adversarial solution will not change. This motivates the heuristic procedure of 1)
greedily searching for the maximum radius p™®* and 2) performing adaptive grid search
over the line [0, p™*]. Site selection methods will produce different solution sets over this
line: the goal is to identify when the output solutions exhibit small, moderate, and large
differences from the baseline solution set. We can then define a series of p thresholds in
terms of these different solution sets. Rather than requiring the user to specify p values,
this procedure automatically generates p values that answer the question, “What would
small, medium, and large distributional shocks look like for my specific dataset?.” This
makes DRO methods usable to practitioners without the need for arbitrary priors about
what the appropriate radius of robustness should be.

Empirical performance [ demonstrate the performance of these methods by re-
analysing Crépon et al [36], who conduct a randomized microcredit experiment in Mo-
rocco, in which rural villages were randomized into receiving access to loans. I use as
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an outcome profits earned by individuals who did and did not take out the loan, and
generate semi-synthetic treatment effects using observed covariates and a linear model.
I first study the properties of site selections generated by my proposed methods, SPS,
and random and stratified sampling on the full sample, evaluating the performance of
these methods in terms of the M SEpsrr and the PEHE. I then implement a simulation
study, in which treatment effects vary with signal strength (the informativeness of ob-
served covariates), and in which I induce distribution shift by moving observed covariates
away from their actual values. I show that my nonrobust methods outperform SPS under
distribution shift, and in high-signal environments.

1.3 Summary of Proposed Methods

This paper introduces four methods for different practical use cases in site selection. First,
the researcher should decide whether they are interested in PATE estimation or CATE
estimation. Second, the researcher should decide how concerned they are about distribu-
tion shift: are they willing to pay ‘the price of robustness’ [17] to trade-off accuracy in
minimizing observed error against potential unobserved distribution shifts?

Four Site Selection Methods and Their Goals

Method Estimand | Objective

p=1, p=0 | PATE Minimize MSE of Population Average Treatment
Effect

p=1, p>0 | PATE Minimize worst-case MSE of PATE under distri-
bution shift

p=2,p=0| CATE Minimize PEHE (Precision in Estimation of Het-
erogeneous Effects)

p=2,p>0| CATE Minimize worst-case PEHE under distribution
shift

1.4 Related Literature
1.4.1 Multi-Site Experiments

In political science, the METAKETA initiatives coordinated by Evidence in Governance
and Politics (EGAP) have systematically tested interventions across multiple countries,
including voter information campaigns and electoral accountability [45, 44], taxation and
formalization policies, natural resource governance interventions [86], community policing
programs [19, 18], and women’s action committees [60]. In economics, the Abdul Latif
Jameel Poverty Action Lab (J-PAL) has pioneered large-scale coordinated evaluations,
most notably the Graduation Program for the ultra-poor tested across six countries [9],
and the Teaching at the Right Level initiative that has reached over 60 million students
globally [10, 11, 12]. Psychology has embraced multi-site replication through the Many
Labs series, systematically testing the reproducibility of classic effects across dozens of
laboratories [66, 67, 47, 46]. Public health has demonstrated the power of coordinated
trials through initiatives such as the WHO SOLIDARITY trial for COVID-19 treatments
involving over 14,000 patients across 35 countries [98, 97], the longitudinal Framingham
Heart Study that established cardiovascular risk factors [37, 63, 64], and the Women’s
Health Initiative examining hormone therapy effects across 161,000 participants [80, 6,

9
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73, 74]. Climate policy research has leveraged multi-jurisdictional implementation of
carbon pricing mechanisms, particularly through analysis of the European Union Emis-
sions Trading System [38, 35, 68], to assess environmental interventions across political
boundaries.

1.4.2 Site Selection in Causal Inference

[49] introduced explicit optimization methods for site selection in political methodology,
and contributed significantly to defining the problem of site selection. Their approach,
based on the synthetic control method, uses optimization to select included sites that
closely approximate sites that are not included in the selection, by estimating balancing
weights [1, 3, 2]. The goal is to have a high-quality weighted average representation
of non-selected sites; in practice, this can be thought of as ensuring that non-selected
sites are within the convex hull of selected sites. The default implementation contains a
penalty term that additionally penalizes using outlying sites in the final selection.

The goal of this paper is to use a set of different technical tools to address the site
selection problem motivated by [49]. Whereas they use an approach based on synthetic
controls intended to select experiments for the PATE, I i) show that the PATE and CATE
have different optimization problems ii) use the theoretical resources of optimal transport
to state and implement the minimization problem iii) use Wasserstein Distributionally-
Robust Optimization to induce robustness to distribution shift.

[90, 91] propose a cluster-then-stratify approach to site selection, which we study via
simulation, and is weakly dominated by 2-transport, as I show in Appendix D

[77] solve the site selection problem, by defining it as the k-median problem. This
is similar to 1-transport, but 1-transport imposes a balance constraint: that each site

receive 17 of the overall population mass. k-medians is not constrained in this way.

Author Method Comment

Gechter et al. (2024) | Bayesian decision theory with structural priors
Egami & Lee (2024) | Synthetic control with optimization

Olea et al. (2024) k-median clustering

Tipton (2013) k-means + stratified sampling ~ 2-transport

Table 2: Overview of Site Selection Methods

1.4.3 Optimal Transport and Causal Inference

Optimal transport has a large number of possible applications for core causal inference
tasks [52]. Studying the changes-in-changes model [8], [92] use optimal transport meth-
ods to estimate control group trends over time, and apply this same transformation to
predict what the treatment group would have looked like without intervention. In causal
inference, [16] applies distributionally robust optimization methods to the problem of
learning treatment effects under unspecified confounding. They show that DRO can be
interpreted as a form of sensitivity analysis. [33] propose using optimal transport meth-
ods to estimate counterfactual distributions, while [43] use optimal transport methods to
solve IPW-type problems [55, 58, 14].

10
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1.4.4 Response Surface Methodology

The conceptual background of this paper is closely related to Response Surface Method-
ology, developed by [27, 29, 28]. In RSM, the goal is to choose experiments based on
their location on the surface that determines how covariates map onto outcomes. This
yields applied optimization problems, where we want to learn, say, the maximum of a
given output function given inputs: this may correspond to an efficient configuration
of industrial inputs, for instance. In our context, we can think of the treatment effect
surface 7(X) as our response surface, and note that we want to choose experiments that
are informative about the treatment effect surface, in a sense we will explore below.

1.5 Structure of Paper

Section 2 motivates the problem of site selection, and studies the case where the popu-
lation of sites is observed, describes the assumptions needed to use covariates to select
sites, states theoretical upper bounds on the downstream errors in estimating the PATE
and CATE due to site selection, formulates the optimization problems associated with
each estimand, and states algorithms to implement each procedure. Section 3 describes
the application of Wasserstein DRO to the problem, motivates robust upper bounds,
and describes a cutting-plane algorithm to implement Wasserstein DRO that leverages a
game theoretic interpretation of the DRO problem. Section 4 studies the behavior of the
site selection procedures by simulation. I study the performance of the methods against
randomization as a function of signal strength, and show that these methods have good
performance relative to randomization methods even for relatively weak signal strengths.
I also characterize the robustness behavior of Wasserstein DRO empirically, and show
that increasing the robustness radius in practice increases the coverage of the selected
set. Section 5 reanalyses Crépon et al. [36], an experiment in Morocco that random-
ized encouragement to access microcredit. 1 generate semi-synthetic treatment effects
based on this data, and assess the behavior of the optimal transport and DRO methods
compared to Synthetic Purposive Sampling and randomization methods as a function of
problem size, signal strength, and distribution shift. Section 6 concludes.

2 Where to Experiment? The Problem of Site Selec-
tion

2.1 Overview of the Problem

Consider a researcher who is faced with a universe of sites &, from which they must
choose a subset S of sites, subject to the constraint that they can choose at most K sites.

The researcher’s goal is to choose K sites that ‘best represent’ the population &2, in
a sense that we will consider more specifically below.

We can formalize this by saying that the researcher must choose K sites that minimize
a specific objective problem. The researcher is interested in the results of a downstream
analysis of an experiment: they will eventually conduct an experiment and get an esti-
mate of their population estimand of interest. The goal is to minimize the error of this
estimate of the population quantity by selecting the ‘best’ sites at the planning stage of
the experiment.

11
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. The researcher defines a population of experimental sites &, and chooses an
estimand of interest (the PATE or the CATE).

. The researcher observes covariate information about a subpopulation of sites
pPC .

. The researcher chooses a subset S C P in which to run an experiment, where
S contains at most K sites.

. The researcher runs an experiment in the S sites, in-sample error is observed,
and out-of-sample error is realized.

Figure 1: The Researcher’s Site Selection Problem
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Remark 1. When P = &2, the full population of sites is observed. When P C &, the
population is not fully observed; the distributionally-robust method below is intended to
cover this case.

2.2 Different objectives of Site Selection

The choice of objective function depends on the research context. First, the researcher
must choose an estimand: they may be interested in the Population Average Treatment

Effect (PATE), or the Conditional Average Treatment Effect (CATE).
Definition 2 (Population Average Treatment Effect (PATE)). E»[Y (1) — Y (0)]
Definition 3 (Conditional Average Treatment Effect (CATE)). E»[Y (1) =Y (0)| X = z]

~

For notational simplicity, I will write 7 = Y (1) =Y (0) and 7(x) = Y (1)
which are related by 7 = [ 7(x)dz.

Heuristically, these are quite different objectives: in the first case, we are interested in
a single number that represents the effect of an intervention over the whole population;
in the second case, we are interested in a function defined on X?¢ — R that describes
how treatment effects vary as covariates vary. We can think of the CATE as describing
the heterogeneity in a given population.

O)X =z,

2.3 Site Selection When the Population is Observed

First, consider the case where the full population of sites is known to the researcher,
the researcher has collected covariate information about all possible sites, and they can
choose to run an experiment in any of those sites. This describes the case where P = Z.
In this case, the expectations described in Definitions 2 and are taken over the observed
subpopulation P, because the population and subpopulation exactly coincide.

The below errors are ‘downstream’, because they are not realized when the analyst
until the analyst conducts the experiment. These quantities can be defined in advance
of the experiment, and the infeasible problem that the analyst would like to solve can be
stated.

2.3.1 Minimizing the Error of the PATE

For the PATE, we suppose that the researcher wants to minimize the Mean Squared Error
of the downstream treatment effect estimate:

Definition 4. PATE problem when the population is observed

mSin MSEpate = mgn]E |:(TP — %5)2} subject to |S| < K

2.3.2 Minimizing the Error of the CATE

For the CATE, we suppose that the researcher wants to minimize the expected Precision
in Estimation of Hetereogeneous Effect [57, 85].

Definition 5 (PEHE).

PEHE = /X (77 (z) — %S(x)]de
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This gives us the researcher’s minimization problem:

Definition 6 (CATE problem when population is observed).

mgn PEHE = msln/ (77 (z) — %S(m)]z dx subject to |S| < K
X

Because these errors are downstream, they are unobserved, and this exact minimiza-
tion problem is infeasible. We can, however, use covariates to study feasible versions of
these problems, and provide guarantees about how close the solution to these feasible
problems are to the infeasible problems.

2.4 Assumptions Needed to Use Covariates To Select Sites
Assumption 7 (Observed Covariates Are Informative About Treatment Effects).
T is non-constant in X

In words, that variation in covariates entails variation in treatment effects.

Assumption 8 (Common Mechanisms Across Sites). For sites s # s':
Eg([r(z,S = s)] =Ep[r(z,S = )]

This stipulates that covariates have the same effect on treatment effect values across
sites.

Assumption 9 (Lipschitz Continuity of 7). The treatment effect function 7 : R4 — R is
Lipschitz continuous with constant L:

|7(x) —7(2")| < L- ||z —2'| Vz,2' € R4

This ensures that treatment effects vary smoothly with covariates. When covariate
values change, treatment effects must vary within an envelope defined by the size of the
change of covariate values. This assumption is important, because it allows us to move
from claims about covariates to claims about treatment effects.

Assumption 10 (Independence of Experimental Design and Site Selection). Let Z, be
the treatment assignment indicator and S; be the site inclusion indicator. Then Z, 1L S;.

2.5 Optimal Transport: Some Tools and Definitions

In the next section, we use the tools of optimal transport to derive bounds on the errors
of the MSEpsrg and PEHE. First, I introduce some terminology and notation, and
a brief sketch of relevant concepts needed to state and solve our minimization problem.
Optimal transport is a powerful methodological framework with broad application to
problems in causal inference.

Optimal transport is concerned with moving mass between a source and a target in the
most efficient way. An original motivating example, known as the Monge-Kantorovich
Problem [75, 5, 93], can be heuristically described as follows. Given a set of Parisian
bakeries with specific production schedules and a set of cafes with specific consumption
demands, located across Paris, what is the most efficient way to route bread from bakeries
to cafes that minimizes the total transport distance? A transport map formalizes the idea
of one possible solution to this problems: a collection of routes from bakeries to cafes,
stored as a matrix. More formally, we have:
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Definition 11 (Transport plan). A transport plan between discrete distributions Px =
Yo Didy, and Qy = > 10, is a matrix {Wij}(n’m) ) such that > "  m; = p; and

(i=1,j=1
m — .
Zj:l =T

In order to evaluate different transport plans, we need a way to assess the costs of a
given proposed transport plan. A cost function describes the cost of travelling from X
to Y. We use ¢ distances as our cost function, so that ¢(X,Y) = d,(X,Y) = || X - Y]|[?.
For p = 1, this gives us the absolute distance, and for p = 2, this is the squared distance
between X and Y.

The optimal transport plan is the plan 7* that in fact minimizes the distance
between P and @, for a given cost function ¢(X,Y"). That is,

Definition 12 (Optimal Transport Plan). A transport plan 7* is optimal if

n m
T = arginfzzﬂinxi —y;|l°
™

i=1 j=1

That is, if 7* minimizes the cost of transporting mass from P to () measured in the
p-norm,

We can think of the solution to the optimal transport as being the shortest possible
distance between X and Y, given the distributions P and Q. The p-Wasserstein dis-
tance formalizes the notion of the shortest possible distance between P and (), and is
specified in terms of an optimal transport plan:

Definition 13 (p-Wasserstein Distance). The p-Wasserstein distance between discrete
distributions P and @) is given by:

W,(P,Q) = igfzzﬁiaﬂl‘i — x|

i=1 j=1

In our bakery example, this is defined in terms of the best possible solution to the
routing problem between bakeries and cafes.

I use the tools of optimal transport to derive upper bounds on the site selection
problem: the Wasserstein distance is central to the theory that follows. I use Px to
denote the empirical distribution of covariates in the population, and Sx to denote the
empirical distribution of covariates in the sample.

2.6 Upper-Bounding Errors Due to Site Selection

In order to minimize the error on the MSFEparg and PEHE, we want to find a feasible
upper bound on the problem that we can minimize via an optimization procedure. I
derive two such bounds below. These bounds have the following properties:

The bounds do not depend on a specific model of treatment effects. That is,
they are generically applicable to any site selection problem (as long as treatment effects
vary smoothly with covariates).
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The bounds make explicit the role of unobserved confounding. This allows us
to be explicit about what our site selection tools can and cannot achieve, and to assess
their performance under unobserved confounding empirically.

We can upper bound the errors of the M .S Eparg and the PEH E by the 1-Wasserstein
and 2-Wasserstein Distances between Px and S, respectively.

In each case we have a sensitivity parameter 7,, which reflects the distance between
population and sample that is due to unobserved confounding.

2.6.1 Upper-Bounding the MSE of the PATE
Theorem 14 (1-Wasserstein Bound on the MSE of the PATE).

MSEpsrp < L? - [Wi(Px, Sx) +m]* + o2

Where m = Ep, [Wi(Py|x, Suix)] represents the degree of unobserved confounding, and
o2 represents irreducible estimation error.

2.6.2 Upper-Bounding the PEHE
Theorem 15 (2-Wasserstein Bound on the PEHE).

PEHE < L*- [Wy(Px, Sx) + na)* + o2

Where 1, = Ep, [Wa(Py|x, Sujx)] represents the effect of unobserved confounding, and o
represents irreducible estimation error.

2.6.3 Discussion of Bounds

These bounds allow us to specify site selection as an optimization problem.
The goal of these bounds is to find a feasible target for us to minimize via optimization.
In both cases, our losses are upper-bounded by:

Wy (Px, Sx) for p € {1,2}

The p-Wasserstein distance between empirical distribution of covariates in the pop-
ulation and the sample. It is straightforward to minimize this quantity by choice of S
using linear programming, as I show below.

Optimal site selections for the PATE and CATE differ. These bounds also help
us to understand the difference in goals between selecting sites optimal for the PATE and
selecting sites optimal for the CATE. The 1-Wasserstein distance places more weight on
location, rather than variance; whereas the 2-Wasserstein distance more heavily penalizes
outliers.

We have defined these bounds in terms of sensitivity parameters n,, which
allows us to study site selection under confounding. Specifically, varying 7,
through simulation, we can empirically assess when site selection methods outperform
sampling — which, because they are randomized, are broadly robust to confounding.

This also allows us heuristically to think about the role of data collection in the site
selection process.
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In the best case scenario, when we have perfect data collection, covariates are sufficient
for treatment effects, so that 7, = 0, and site selection using observable covariates is a
good idea.

In the worst case, observed covariates are completely uninformative about unobserved
covariates, so that U 1L X, and E[W,(Pyx, Svx)| = E[W,(Py, Sv)].

2.7 Similarity between optimization problems

In what follows, I will consider the more general problem of minimizing the p-Wasserstein
distance, for p € {1,2} on the understanding in that, when p = 1 we are minimizing an
upper bound on the PATE, and when p = 2 we are minimizing an upper bound on the
CATE. This considerably simplifies the exposition.

2.8 Minimizing The Upper Bounds Via Linear Programming

The bounds derived in the previous section give us clear objectives. If we want to select
sites optimal for the PATE, we choose the sites S that minimizes the 1-Wasserstein
distance between the empirical distribution of covariates in the selected sites Sy and the
empirical distribution of the covariates in the population Py. For the CATE, we select
the sites that minimize the 2-Wasserstein distance.

We can formulate each site selection problem as a Mixed Integer Linear Program.

From Theorem 14 now have the following optimization problem to minimize the upper
bound on M S FEparg:

mgn Wi (Px,Sx) subject to |S] <K

To solve this problem, we can formulate it as a Mixed Integer Linear Program (MILP).
Define the site selection indicator s; = I{s € S}. Then, our optimization problem is:

MILP formulation for Site Selection Problem (p

Pl |P|
min S mikllw; —
’ j=1 k=1
subject to:
1P|
Z s; <K (Site budget constraint)
=1
1P|
Z Wy = W VjeP (Population marginal)
k=1
|P| S
Z Tk = % Vk € P (Selected Subset’s marginal)
j=1 =151
ik < s, VjkeP (Can only transport to selected sites)
mir >0 VjkeP (Non-trivial transport plan)
s; €{0,1} VjeP (Site selection indicator is binary)
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Proposition 16. For appropriate choice of p, minimizing the p- Wasserstein distance is
equivalent to solving the above Mixed Integer Linear Program.

3 Site Selection Under Distribution Shift

In the previous section, we studied the problem of selecting sites optimal for the PATE
and the CATE given observed information about the covariates. We can think of this as
the full-information case: we assume that we have good knowledge of the data-generating
process that determines treatment effects, and can have enough information to actually
minimize the MSE of the PATE and the PEHE.

In practice, however, we might think that our data is imperfect, or measured with
error. One way to formalize this notion is to say that we our data is subject to distribution
shift, or covariate shift.

it is generally unrealistic to assume that we observe the full population. Instead,
we may want to pick a set of sites that with robustness guarantees to some degree of
distribution shift.

Wasserstein Distributioanlly-Robust Optimization (DRO) is a set of methods for solv-
ing optimization problems with guarantees about the worst-case performance of a solution
when the true underlying data distribution is a specified distance away from the observed
data distribution [50, 20, 23, 42, 70].

To motivate Wasserstein DRO, we first motivate the notion of an ambiguity set:

Definition 17 (Ambiguity Set). An ambiguity set of radius p around an empirical dis-
tribution P, is the set of all distributions that are p-close to P in the p-Wasserstein
metric.

B(Fy,p) ={P €2 : Wy(Pn, P) < p}

Wasserstein DRO allows us to minimize the minmax risk over all candidate distribu-
tions in the ambiguity set.

3.1 Formalizing the Distributionally Robust Site Selection Prob-
lem

Conveniently, the formal results in the previous section specified upper bounds in terms of
the Wasserstein distance from the empirical population to selected sample distributions.

The empirical idea here is analogous to that above: we minimize the Wasserstein
distance between the sample and the population empirical distributions. Now, however,
we explicitly take account of the fact that the empirical distribution Py is not guaranteed
to be a perfect representation of the underlying distribution that generated the data.

We can incorporate our uncertainty about the underlying distribution into our opti-
mization problem via the ambiguity set. In particular, we want to minimize the worst-case
risk!, in the following formal sense:

INote that this differs from the sense of worst-case risk described in [49]. They mean that they
optimize an upper bound analogous to our results in the previous section; here I mean that we minimize
the risk over an adversarially chosen distribution in the ambiguity set.
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Definition 18 (Distributionally-Robust Site Selection Problem).

min sup W,(P', S
S:SISK preB(Pp) ol )

Where, by plugging in p € {1, 2}, we recover the site selection problems for the PATE
and CATE respectively.

3.2 Wasserstein DRO as Game between Researcher and Nature

Distributionally-robust optimization has a conveneitn game-theoretic interpretation. Writ-
ing out the DRO problem again, we can see:

Inner problem: Nature selects worst-case distribution

min sup W,(P, S)
S:S|I<K PeB(P,p) 4 )

~
Outer problem: Researcher selects sites

The inner sup is an action by adversarial Nature, to choose the worst-case distribu-
tion P, subject to the constraint that they can reallocate mass equal to at most p. In
practice, this means that Nature can choose to relocate points adversarially (in practice,
as outliers), selecting the worst-case distribution Q, and our result will still represent a
valid upper bound on the chosen minimand. The outer minimization represents our best
response to this adversarial perturbation. In short, p represents the budget of covariate
shift that the researcher wishes to insure against.

3.3 Algorithm for Wasserstein DRO

This game-theoretic interpretation is not just a point of theoretical interest: it in fact
motivates the algorithm I use to implement the DRO version of site selection.
We have:
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Algorithm 1 Heuristic Algorithm for Distributionally Robust Site Selection

Require: Site coordinates X € R™? number of sites s, robustness radius p, tolerance e
Ensure: Selected sites S5*, robust distance W,

1: Initialize: Solve non-robust problem to get S

2: Set worst-case scenarios Q© =, t =0

3: while not converged do

4: Given site selection S®, Nature chooses an adversarial perturbation:

5 QUHY € arg maxQ.w,(@,r)<p Wp(@, S®)

6 Let UB!HD = 117,(QU+D, SO) > Upper bound

7 The adversarial perturbation is stored in memory:

8 Q(t-‘rl) — Q(t) U {Q(t-‘rl)}

9 Researcher minimizes site selection error against all observed adversarial pertur-
bations:

10: St ¢ arg Ming;|gj—s MaXge g+ Wp(Q,S)

11: Let LB+ = maxgegun Wp(Q, SHD) > Lower bound

122 if UB™) — LB < ¢ then

13: break > Gap is small: solution is near-optimal

14: end if

15: t+—t+1

16: end while

17 S* + S+

18: return Selected sites S* and robust distance W;

The ambiguity set B(P, p) is built constructively out of Nature’s best responses to the
Researcher’s site selections. We do not need to enumerate all elements of the Wasserstein
ball, which is an infinite set; we need only enumerate the adversarial perturbations that
increase the Researcher’s observed loss.

Proposition 19. The solution S* of Algorithm 1 is e-close to the minimizer of the
Wasserstein DRO site selection problem.

3.4 Intuition: What kind of robustness is Distributional Ro-
bustness?

Incorporating the robustness parameter p allows to describe new bounds on our estimates.
This gives us the robust upper-bounds:

sup MSEPATE<Q,S) < L2 ’ (WI(P7 S) tpo+ 771)2 + 02
QEB(Pn,p)

sup PEHE(Q,S) < L?- (Wy(P,S) + p+n2)* + o
QEB(P,p)

Where these guarantees are given over a Wasserstein ball around the observed distri-
bution. DRO ensures that the solution is robust to distribution shift — that is, robust
to changes in the distribution of observed covariates. We can also think of this as mea-
surement error: our solution should be robust to a specified degree of mismeasurement
p. This is in contrast to the parameter 7,, which represents outcome model error due to
unobserved confounding. procedure.
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3.5 Procedure for Choosing Robustness Parameter p

How should one choose the degree of robustness in practice? Experiments detailed in 4.4
show that, at high levels of p, the algorithm can increase the coverage of the solution set.

Choosing a robustness radius is a practical problem in Wasserstein DRO, because
it is not clear i) what the robustness radius means in real terms and therefore ii) how
practitioners should think about radius selection.

I propose an automated, data-driven method, that benchmarks levels of distribution
shift against variation observed in the data, and gives users a choice of levels of shift to
guard against.

The idea is to do grid search over values of p, and evaluate the stability of the solution
set as p changes.

Define the Jaccard similarity:

Definition 20. Jaccard similarity J(S7, S;) = M
|S1 U Sy
This Jaccard radius selection procedure chooses robustness parameters in Wasserstein
DRO by constructing an empirical Wasserstein grid from pairwise distances between all
sites in the covariate space. The algorithm performs a greedy search to identify ppay, the
maximum radius beyond which adversarial solutions cease to change meaningfully. Start-
ing from the non-robust baseline solution S, the procedure solves the DRO problem
at empirical distance quantiles and tracks solution stability using the Jaccard similarity.
When the Jaccard similarity falls below 0.5, indicating that solutions share fewer than
half their sites with the baseline, the algorithm terminates the search and sets ppac. A
refined grid search over [0, pmax] then maps the solution path, allowing automatic classi-
fication into four robustness levels: none (p = 0), moderate (75-90% solution overlap),
high (50-75% overlap), and maximum (< 50% overlap). This procedure generates p
values that answer the question: “What would small, medium, and large distributional
shocks look like for my specific dataset?”
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Algorithm 2 Data-Adaptive Robustness Radius Selection via Jaccard Similarity

Require: Site coordinates X € R™*? number of sites s, Wasserstein norm p, grid reso-
lution ngiq
Ensure: Robustness levels {pmoderates Phighs Pmaximum

1: Compute empirical distance matrix: D;; = W(dy,,d,;) for all i, j € [n]

2. Extract pairwise distances: D = {D;; : i # j}

3. Solve baseline problem: S© € arg ming;|sj—s Wp(ﬁ’n, Sx) > Non-robust case
4: Initialize: p =0, J = (), converged = False > Greedy search for ppax
5. for p € quantiles(D, [0.1,0.2,...,0.9]) do > Empirical grid
6: Solve DRO problem: S € arg mMing.(s|=s SUPG., (0, £,)<p W,(Q, Sx)

7: Compute Jaccard similarity: J® = %

8: Store: J <+ J U {(p, J?)}

9: if J(») < 0.5 or plateau detected then > Solutions diverge significantly
10: Pmax < p, break
11: end if

12: end for > Grid search
13: Define grid: G = {p1, p2,- - -, Prgua} OVer [0, Pmax]

14: for p, € G do

15: Solve DRO problem: S® € arg ming, g/ SUPG.W, (0, 2) < W,(Q, Sx)

16: Compute Jaccard similarity: J®) = %

17: end for

18: Prmoderate < min{py : J*) € [0.75,0.90]} > Small perturbation
19: Phigh < min{py : J®) € 10.50,0.75]} > Moderate perturbation
20: Prmaximum < min{py Jk) < 0.50} > Large perturbation
21: return {pmoderatea Phigh pmaximum}

The intuition behind the procedure is that there must be a maximum adversarial
perturbation budget p™**, such that, for any p > p™*" the ‘most robust’ site selection
does not change. This is because variation in the data is finite. This motivates the
following heuristic procedure: quickly find p™ax, and then do adaptive grid search on the
interval [0, p"%*], where we may sequentially add refinements in order to ensure that we
collect enough site solutions S(p) to be able to estimate J(S(p), S(p')) for a large number
of pairs.

Once we have this similarity measure for enough points, we can compare the ob-
served similarities {J(S(p;), S(p;))}i; and rank them, giving us a set of solution sets with
decreasing similarity. We then output a set of three increasing p values such that the
solutions at each p have decreasing similarity to the baseline solution p = 0. This ensures
that we have solution sets that increase in dissimilarity to the nonrobust solution as the
radius p increases.

4 Simulations: How do the site selection tools behave
qualitatively?

This section presents simulation evidence to illustrate the theoretical differences between
PATE and CATE site selection objectives, evaluate the performance of optimization
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methods relative to conventional approaches, and demonstrate the robustness properties
of the DRO framework. The simulations address three key questions: (1) How do solution
sets differ between 1-Wasserstein (PATE) and 2-Wasserstein (CATE) optimization? (2)
Under what conditions do optimization methods outperform randomization? (3) How do
site selection solutions change as the robustness parameter p increases?
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Figure 2: Illustrative solution sets for the PATE and the CATE. Both methods simultaneously solve for optimal Voronoi partitions
of the covariate space, and optimal representatives within that partition. They differ with respect to the p-norm used to solve the problem.
We can understand both methods as optimal versions of stratified sampling (see Appendix D); the ¢! norm places more weight on location,
while the 2 norm places more weight on minimizing the variance of the site selection. is therefore an optimal version of stratified sampling.
The difference is between choosing points that well represent the support of a function, 7(X), which requires good coverage of the space
of X, versus choosing points that well represent a functional E[7(X)], which requires choosing sites that provide good coverage of a single
point, the population centroid.



4.1 CATE selections approximate a uniform grid; PATE selec-
tions are more localized

The above bounds show that there are different site selection objectives for the PATE
and the CATE. In the PATE case, we care about the 1-Wasserstein Distance, and in the
CATE case the 2-Wasserstein distance.

Recall that the 1-Wasserstein distance contains the absolute norm, and the 2-Wasserstein
distance is a function of the £2 norm. This entails that while the cost of increasing dis-
tance is linear in the 1-Wasserstein case, the cost of increasing distance from unselected
points to selected points is quadratic in the difference of distances.

This should penalize selections that are far away from unselected points more in the
2-Wasserstein case, leading to a more compact set for the 1-Wasserstein solution and a
larger set for the 2-Wasserstein solution.

This is intuitively appealing in the causal inference context, since the 1-Wasserstein
distance is associated with the PATE, where our best guess of the PATE is the centroid
of our observed sites. The CATE problem involves estimating a function over the support
of X, and so, intuitively, we would want a solution set with improved coverage over the
support of X.

To test these theoretical predictions, I generate synthetic datasets with known covari-
ate distributions and compare the geometric properties of optimal site selections under
both objectives. The simulation uses |P| = 30 candidate sites distributed across a two-
dimensional covariate space, from which K =5 sites are selected.

In practice, for small-sized problem instances, the solution sets are fairly similar.
This is because, for sufficiently well-behaved data, site selections that minimize the 1-
Wasserstein distance also minimize the 2-Wasserstein distance and vice versa. This be-
havior is analogous to that of Least Absolute Deviations versus Ordinary Least Squares
— while using the ¢! distance rather than the ¢? distance does in fact produce different
solutions, these solutions may not be qualitatively different.

However, as the dimensionality and complexity of the covariate space increases, the
differences become more pronounced. The CATE solutions exhibit systematically larger
convex hull areas and greater dispersion, consistent with the goal of function estimation
over the support of the space rather than centroid approximation.

In our causal inference context, the practical implication is that, for small size problem
sets, solution sets that are optimal for the PATE are likely also to be optimal for the
CATE. The CATE objective, in principle, prioritizes coverage over the space, so that we
can learn E[7|X = z] for a large support X. The PATE objective prioritizes coverage
of the center, so that we learn the average location with high probability. In practice,
however, good coverage of the space implies good coverage of the average, and a solution
that minimizes absolute distance from selected sites to non-selected sites will also provide
good coverage of the support of the covariates.

4.2 For the PATE, optimization outperforms random sampling
until n = .7

Randomization is minimax optimal for experimental selection when the researcher has
no prior information about experiments [62]. We are essentially using prior information,
in the form of covariates, to choose sites, and would expect that the quality of our site
selection improves as covariates become more informative.
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Figure 3: Solution sets for PATE and CATE. Selected sites for the CATE exhibit slightly
larger coverage of the support of the covariate space than solution sites for the PATE. In
practice, the difference is relatively small for well-behaved data.
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Figure 4: 2D Geographic Site Selection. In this simulation study, the goal was to create
a data set with geographical features: an urban core, combined with a long trail of rural
sites. The covariates in this exercise were latitude and longitude. The CATE solution
has a somewhat more dispersed site selection solution than that of the PATE case. The
PATE solution clusters around the population centroid (urban core), while the CATE
solution provides more uniform coverage of the rural-urban gradient.
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The key question is: at what threshold of covariate informativeness do optimization
methods cease to provide benefits over simpler approaches? This threshold determines
the practical applicability of the optimization procedures.

To evaluate this, I run a simulation in which the site selections are evaluated over a
grid of n values, where 7 controls the degree of unmeasured confounding, as in the upper
bounds derived above. There is a mild reparameterization, as 7 is now defined on the
support [0, 1], with the interpretation that n = 0 implies that covariates are sufficient,
and there are no unobserved determinants of treatment effect, while n = 1 implies that
covariates are completely uninformative about treatment effects, and the optimization
methods are essentially fitting to noise.

The simulation generates treatment effects using the parameterization detailed in
Appendix B.1, which allows systematic variation of signal strength while maintaining
realistic correlation structures between covariates and outcomes.

The goal is to compare the optimization procedures to 1) complete randomization, in
which sites are selected at random and 2) stratification, in which k-means is first used to
separate the sites into strata, and sites are then sampled from the k clusters. This is the
procedure suggested in [90].

These represent two different assumptions about our prior information. Complete
randomization implies that we have no information about potential outcomes from co-
variates. Stratification implies that we have some information about covariates: we know
that some covariates are important enough that we should condition our randomization
on them. Stratification can be understood as a compromise between complete random-
ization and optimization approaches: it is a constrained randomization approach.

The simulation study confirms our theoretical expectations: optimization methods
perform better when covariates are informative up to n ~ .7. We can translate n =
.7 = R? ~ .5. The Crépon study below has an R? of .66, which would mean we had
good enough covariates to consider optimization-based selection methods.

This breakdown point has important practical implications. Researchers should vali-
date covariate informativeness before relying heavily on optimization-based site selection.

This suggests a straightforward moral: optimization methods outperform random
assignment when covariates are sufficiently informative about potential outcomes.

4.3 For the CATE, 2-Wasserstein transport is optimal stratified
sampling

I show this result formally in Appendix D. The intuition is that to select sites that provide
optimal coverage of the support of the function, 2-Wasserstein transport simultaneously
selects an optimal partition and optimal representatives of the space. This is in distinction
to stratification, where optimal representatives are identified given a partition. Hence, 2-
Wasserstein transport provides a weak lower bound on the error of the stratified sampling
solution.

This equivalence provides both theoretical insight and computational advantages.
Theoretically, it shows that the optimal transport framework provides a lower bound on
the error of stratificaton. Computationally, it allows us to leverage established stratified
sampling algorithms as benchmarks.

28

Draft



Breakdown Analysis: Optimization beats stratified sampling until . =.7
95% Bootstrap confidence intervals.
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Figure 5: Performance of PATE optimization method as unobserved confounding in-
creases. The optimization advantage diminishes as n approaches 0.7, beyond which ran-
domization weakly dominates. Error bars represent 95% confidence intervals based on
1000 simulation replications.

29

Draft



Method Performance Rankings Across Conditions
Numbers show performance rank (1 = best average MSE_PATE)
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Figure 6: Optimization breaks down versus random sampling when between
50 —90% of treatment effect variance comes from unobserved factors (95% CI).
n parameterizes the degree of unobserved confounding. In figure 4a) we can see that op-
timization outperforms stratification until n > .7. 95% bootstrapped confidence interval

for this breakdown point is [.7,.95]. In figure 4b)optimization dominates when signal
strength is high (7 is close to 0); with stratification beating randomization otherwise.

30

Draft



CATE Performance: 2-Wasserstein = Optimal Stratified Sampling

2-Wasserstein transport creates optimal balanced stratification

20

PEHE

0.5

0.50
n (Unexplained Share)

Method =#= Optimization =@= Random =@= Stratified
Figure 7: The CATE optimization method performs roughly equivalently to optimal

stratified sampling. Both methods achieve similar PEHE values across different signal
strength levels, confirming the theoretical equivalence.
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4.4 Site selections have increased coverage as p increases

The robustness parameter p controls the budget allocated to the adversary in the dis-
tributional robustness problem. As p increases, the DRO framework hedges against in-
creasingly severe distribution shifts by selecting more dispersed site configurations. This
section demonstrates how robustness considerations systematically alter the geometry of
optimal selections.

To illustrate this behavior, I solve the DRO problem across a range of p values and
track the evolution of site selection patterns. The simulation uses a two-dimensional
covariate space with |P| = 30 candidate sites, selecting S = 5 sites at different robustness
levels.

DRO Site Selection: Hull Evolution with Gradual Density Centroid trajectory of selections
Hull areas: .=0 (1.30) —> .=0.7 (6.11) Arrow shows direction of increasing .

N

1
1
p p
0.6
0 ® 04 o § 0.6
< 02 X 04
0.0

0.0

-2 -1 0 1 2

Figure 8: As p increases, site selections become less compact. The convex hull area
expands from 1.30 to 6.11 as p increases from 0 to 0.7, demonstrating the systematic trade-
off between optimality and robustness. The centroid trajectory shows how the selection
focus shifts (marginally) away from the population center toward broader coverage as
distributional uncertainty increases. This is a visualization of the ‘price’ of robustness’ —
some amount of drift in our point estimate of the PATE.

This robustness-coverage trade-off has important implications for experimental design
under uncertainty. Researchers facing potential distribution shift should choose p values
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that balance the benefits of robustness against the costs of suboptimal site allocation.
The Jaccard radius selection procedure, described in Section 3.5, provides an automated
way to select this radius, with implications for the size of the hull selected.

5 Reanalysing Crépon et al. (2013).

Crépon et al. (2013) studied the effects of a randomized microcredit intervention in
Morocco. They considered a population of 162 villages, which were randomized into 81
matched pairs. Treatment consisted of an encouragement campaign to take out credit
from Al Amana banks: “door-to-door campaigns, meetings with current and potential
clients, contact with village associations, cooperatives, and women’s centers, etc.” (129).

These villages that were randomized into treatment were a population of sites that
were on the periphery of catchment areas of existing branches: the goal was to assess
whether taking up microcredit had an impact on a number of economic variables.

In this simulation, we take household self-employment activity profits as the outcome.
We estimate the effect of treatment, site-level and individual covariates on profits, and
estimate synthetic treatment effects for every individual in the sample using observed
information. Sites are selected on the basis of aggregate-level site data, and we then
estimate the error in terms of M SFEpatg and PEHE for each site selection. A more
detailed description of the simulation procedure can be found in Appendix B.

5.1 Simulation Procedure

Our simulation consists of four main components: baseline parameter estimation, syn-
thetic data generation, site selection method application, and performance evaluation.

5.1.1 Baseline Parameter Estimation

We begin by estimating the predictive power of village-level covariates for treatment
effects using the empirical Cr’epon data. We aggregate individual-level data to site level
and estimate site-specific treatment effects. We then regress these site-level treatment
effects on baseline village characteristics to estimate the signal-to-noise ratio, finding that
the empirical signal strength R* = .66.

5.1.2 Synthetic Data Generation

For each simulation run, we:
1. Sample village-level covariates from the empirical distribution
2. Apply the trained treatment effect model to predict site-level effects
3. Add controlled noise to achieve target signal-to-noise ratios
4. Generate individual-level outcomes consistent with site-level parameters

The noise level is calibrated such that the proportion of treatment effect variance ex-
plained by covariates matches the specified signal strength (0.3, 0.66, or 0.9).
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5.1.3 Distribution Shift Implementation

We implement distribution shift by modifying the covariate distributions of candidate
sites relative to the deployment population. Shift magnitude is expressed as multiples
of the empirical Wasserstein distance observed in the original Cr’epon data. For shift
magnitude ¢ € {.4,.6,.9,1.7,3.4}, we transform candidate site covariates such that:

Wa(Px, Penit) = ¢ x W,

This approach grounds simulation conditions in realistic population variation. The
simulation is run for two signal-to-noise ratio levels: .3, .9. These correspond to a low
signal and high signal case respectively.

The actual degree of treatment effect variance explained by observed covariates in the
Crepon data is .66: we therefore benchmark our simulation conditions against the actual
predictiveness of covariates observed in the data. We have three cases: the low-signal
case, the benchmark case, and the high-signal case. This is helpful, because it is useful to
consider the behavior of these methods in the context of a realistic social science study,
with naturalistic data collection.

We also benchmark distribution shift against observed variation in the data. We
calculate the actual variation in the data, and study the behavior of the methods. Because
this is a simulation study, however, we can induce plausible degrees of distribution shift
that are also benchmarked against naturalistic observed shifts in the data. This is done by
estimating shifts based on the empirical Wasserstein distances in the data; and inducing
distribution shift as a percentage of these observed shifts.

5.1.4 Method Implementation
We implement five site selection methods:
« Random: Uniform random selection from candidate sites
o SPS: Synthetic Purposive Sampling using convex hull optimization

« Optimal Transport (Non-Robust): Wasserstein distance minimization without
robustness

o Wasserstein DRO: Distributionally robust optimization with uncertainty radius
p

o Stratification: K-means clustering followed by within-cluster random sampling

Each method selects K sites from a pool of N candidate sites, with (N, K) € (20,4), (25, 5)
corresponding to realistic experimental scales.
5.1.5 Performance Evaluation

For each site selection, we estimate PATE and CATE using standard methods and com-
pare to ground truth values calculated from the complete synthetic population. Perfor-
mance metrics include:

o MSEpsrg = (FPATE — TPATE™)?
« PEHE = E[(#(X;) — 7™(X;))¥]

We conduct 500 simulation runs per scenario to ensure stable performance estimates.
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| Problem Size | Signal | Shift | Winner | Advantage |

| T T T T

20 choose 4 0.3 0.0 | SPS 71.9%
20 choose 4 0.3 0.4 | SPS 48.0%
20 choose 4 0.3 0.6 | SPS 9.0%
20 choose 4 0.3 0.9 | SPS 45.4%
20 choose 4 0.3 1.7 | Wasserstein DRO 39.8%
20 choose 4 0.3 3.4 | Wasserstein DRO 49.9%
| 20 choosed | 0.9 | 0.0 | Optimal Transport | 43.6% |
20 choose 4 0.9 0.4 | Optimal Transport 21.8%
20 choose 4 0.9 0.6 | Optimal Transport 30.1%
20 choose 4 0.9 0.9 | Optimal Transport 34.2%
20 choose 4 0.9 1.7 | Wasserstein DRO 10.1%
20 choose 4 0.9 3.4 | Wasserstein DRO 10.9%
25 choose 5 0.3 0.0 | Optimal Transport 3.4%
25 choose 5 0.3 0.5 | Wasserstein DRO 3.5%
25 choose 5 0.3 1.0 | Wasserstein DRO 4.7%
25 choose 5 0.3 1.3 | Wasserstein DRO 7.9%
25 choose 5 0.3 1.6 | Wasserstein DRO 12.0%

Table 3: Results: Error in estimation of the MSFEparg by method result. Best-
performing method over all simulation runs is reported here. Advantage is % reduction
in error of the M SEpaTE.

5.2 Results

The simulation results demonstrate three main patterns. First, site selection method
choice produces larger performance differences for PATE estimation than for CATE es-
timation. Second, the relative performance of methods depends on signal strength and
problem size. Third, distributionally robust methods become preferred under realistic
degrees of distribution shift.

5.2.1 PATE Performance Results

For PATE estimation, performance advantages range from 3.4% to 71.9% . Under low
signal strength (0.3), SPS dominates when distribution shift is minimal, but Wasserstein
DRO becomes optimal when shift exceeds 1.7 times empirical variation. Under high signal
strength (0.9), Optimal Transport methods generally outperform alternatives, except
under large distribution shift where DRO maintains advantages.

5.2.2 CATE Performance Results

For CATE estimation, performance differences between methods are substantially smaller,
with most advantages below 1%. This pattern holds across signal strength and shift con-
ditions, indicating that CATE performance depends more on fundamental signal-to-noise
constraints than on site selection method choice. Our results show that site selection for
the PATE is qualitatively different to site selection for the CATE. In Appendix D, I show
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Table 4: PEHE Performance Summary Table

| Problem Size | Signal | Shift | Winner | Advantage |
| 20 choose 4 | 0.3 | 0.0 | Optimal Transport | 0.9% |
20 choose 4 0.3 0.4 | Optimal Transport 0.3%
20 choose 4 0.3 0.6 | Tie < 0.1%
20 choose 4 0.3 0.9 | Tie < 0.1%
20 choose 4 0.3 1.7 | Wasserstein DRO 0.7%
20 choose 4 0.3 3.4 | Wasserstein DRO 0.7%
| 20 choosed | 09 | 00 |Tie | - <01% |
20 choose 4 0.9 0.4 | Tie < 0.1%
20 choose 4 0.9 0.6 | Optimal Transport 0.3%
20 choose 4 0.9 0.9 | Tie < 0.1%
20 choose 4 0.9 1.7 | Tie < 0.1%
20 choose 4 0.9 3.4 | Wasserstein DRO 0.5%
25 choose 5 0.3 0.0 | Tie < 0.1%
25 choose 5 0.3 0.5 | Optimal Transport 0.1%
25 choose 5 0.3 1.0 | Wasserstein DRO 0.1%
25 choose 5 0.3 1.3 | Optimal Transport 0.1%
25 choose 5 0.3 1.6 | Tie < 0.1%

Table 5: Error in estimation of the PEHFE by method result. Best-performing
method over all simulation runs is reported here, differences of less than .1% reported as
a tie.
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that there are theoretical equivalences between optimal transport methods and familiar
survey sampling approaches.

5.2.3 Optimal Transport methods perform better for medium-to-large site
selection problems

SPS methods have an advantage in the (240) case under low signal strength, but are
dominated by Optimal Transport methods for the larger problem size of (250).

The transition point likely occurs because convex hull approaches suffer from dimen-
sionality limitations while optimal transport methods handle larger optimization spaces
efficiently.

5.2.4 Optimal Transport methods perform better in high-signal strength
conditions

Optimal transport methods strictly dominated in the signal = .9 case. This was true for
both the original and shifted problems, with performance advantages over SPS ranging
from 10.1% to 43.6%.

5.2.5 DRO methods perform better for larger distribution shift levels

The crossover point where DRO methods become preferred occurs at shift levels of 1.7
times observed empirical variation. This is in part because DRO is specifically designed
for the distribution shift context; the synthetic control method does not come with specific
robustness guarantees against adversarial distribution shift.

For CATE estimation, both methods perform equivalently well, with Optimal Trans-
port methods weakly dominant.

This is largely because of the nature of the CATE estimation task, in which the goal
is to smoothly interpolate a function over a large covariate space. In this setting, the
optimal site selection is a regularly spaced grid over the support of the covariates.

5.2.6 CATE methods perform poorly in the low-signal regime

Estimating the CATE is a fundamentally difficult problem, because it requires that we are
able to well-estimate 7(x) at every 'cell’ X = z. In the low-signal regime, our estimates
will be inherently noisy.

The limited difference between CATE and PATE methods may be an artifact of the
simulation structure.[40] argue that macro-level variables are, in the case they study, more
significant moderators of treatment effects. By aggregating up individual level treatment
effects, it is likely that we are constructing macro level variables with little realistic
variation between sites, instead of supposing that treatment effects vary significantly as
a function of macro variables.

When within-site variance of treatment effects is large relative to between-variance,
selecting sites based on aggregate-level data is not very informative. This will naturally
be the case when selecting sites based on aggregated data: we lose the individual-level
information that ultimately determines how precise our estimate of the PEHE is.

In essence, even though we are in a high-signal regime, our site selection covariates
are not especially predictive of individual treatment effects. We essentially need to study
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the behavior of the CATE method when treatment effects contain large, site-moderated
effects.

6 Conclusions and Discussion

Distributionally-Robust Optimization methods hedge against re-
alistic uncertainty in the deployment of field experiments.

The Crépon reanalysis demonstrates that distributionally robust optimization provides
insurance against population misspecification at realistic uncertainty levels. DRO meth-
ods become preferred when deployment populations differ from candidate sites by margins
exceeding 1.7 times observed empirical variation.

Use of optimization tools incentivizes allocating more resources
to the planning stage.

A practitioner objection to these methods might be that collecting data before engaging
in an RCT is expensive or difficult, and that large-scale, policy-relevant RCTs are al-
ready difficult enough. I argue however that pre-emption is better than cure: given the
expense and scale of many modern RCTs, improving pre-execution data collection may
significantly increase the efficiency of the actual experimental estimate, making it much
less likely that the experiment will fail due to random features of the selected experi-
mental population, rather than the absence of a treatment effect. The performance gains
documented in our simulation suggest that optimization-based site selection can justify
additional planning costs. PATE estimation improvements of 20 — 70% should justify the
upfront costs of additional scoping work for most large-scale RCTs.

Optimal transport-based site selection methods should be par-
ticularly useful for large scale experimental planning.

Optimal transport methods scale better than alternatives to large experimental design
problems. The computational advantages become more pronounced as site pools and

covariate dimensions increase, making these approaches particularly suitable for multi-
country or multi-region experimental programs.

Choice of Site Selection method matters more when estimating
the PATE.

PATE estimation benefits from sites that efficiently represent population means, while
CATE estimation requires broad coverage of the covariate space. Site selection based on
aggregate data provides limited information about within-site individual-level variation
needed for precise CATE estimation.

Convex hull approaches are likely less reliable in high dimensions

SPS relies on the idea that non-selected sites can be well-approximated by convex com-
binations of selected sites. Most of the probability mass concentrates near the boundary
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of the convex hull, making interior approximation unreliable. This also means that the
convex hull approach is computationally more challenging in higher dimensions.

Optimization methods need good covariate information to be
useful; otherwise, use randomization.

We found that optimization methods perform well against randomization when covariates
were only moderately informative (R? € [.51,.19]). Further, the worst-case performance
of optimization methods significantly exceeded the 95 percentile performance of ran-
domization in our simulations. If planners are able to collect prognostic information, they
could use this to run better-powered experiments, with guarantees on worst-case error.

6.1 Future work
Neyman-type shrinkage

If we have prior information about the within-variance of individuals in a given site, it
would be possible to incoroprate this information into the site selection problem. The
upper bounds for the PATE and CATE contained irreducible estimation error terms, but
if we observed individual level data, we could minimize both components of the bounds.

Selecting individual units

We can adapt this method to select individuals to enroll in an experiment, not just sites.
This is a topic of particular interest in experimental planning in industry settings, where
user bases may be large, and understanding the behavior of specific market segments is
of core interest.

Optimal Transport methods are likely well-suited to this case, because, discussed
above, they are well-suited to high-dimensional problems, and large-sized problem in-
stances.

Optimal transport and DRO are applicable to a wide variety of core causal
inference tasks.

It is possible to apply optimal transport methods to core tasks in causal inference: achiev-
ing balance between treatment and control distributions, matching, and synthetic control-
type approaches. Distributionally Robust Optimization methods could be useful for re-
searchers who want to assess the robustness of their conclusions to distribution shift.
Here, the connection with sensitivity analysis is germane: researchers can find treatment
effect estimates with guarantees on their stability under worst-case distribution shift.
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A Proofs of Main Results

A.1 Proof of Theorem 14

Lemma 21 (Corollary of Kantorovich-Rubenstein Formula). If f is Lipschitz, then

fro 1o

Proof. The Kantorovich-Rubinstein Formula states: If f is Lipschitz with constant L,

then:
‘/fd/t—/fdv Ssgp{‘/hdu—/hdzj

= Wl(“v V)

'/gdu—/gdv < Wilp,v)

‘/idu— idv < Wi(p,v)

< L-Wi(u,v)

s his 1-Lipschitz}

H/fdu—/fdv < Walu,v)
‘/fdu—/fdv <L Wi(v)

We also require two facts about Wasserstein Distances:

Proposition 22 (Wasserstein Distance with Shared Conditionals). If Pxy = Px X Py|x
and Qxy = Qx X Pyx are two joint distributions that share the same conditional
distribution Pyx but have different marginals Px and Qx, then:

WP(PXU? QX,U) - Wp<PX7 QX)

Proof. To show that W,(Px v, Qxuv) = W,(Px, Qx), we need to show that W,(Px v, Qxv) <
Wp(Px,Qx) and Wp<PX7QX) S Wp(PX,UaQX,U)- Fil"St, we show that Wp(PX,U; QX,U) S

WP(PX7 QX) .
Let 7% be an optimal transport plan between Py and ()x, so that:

/!xl — zo|” dyx (21, 29) = W) (Px,Qx)
We define a transport plan IT* for Px  and Q) x ¢ by setting:
dIT* ((z1,u1), (2, uz)) = dyy (21, x2) K (duy|x1)dy, (dusg)

Where 0, (dus) implies us = uy. The first marginal of IT* is:

/ AT (21, 1), (22, 1)) = K (dus|1) / A (21, 32) = K (dua|21)dPy (21) = dPy u (21, ur)
T2,Uu2

2
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The second marginal of IT* is:

/ AT (1, 0, (3, 02)) = / K (dus|y )y (a1, 2)

We can apply the Disintegration Theorem (see [villani2008], to show that, for shared
kernel K and optimal 7%, the second marginal can be written as:

de(JZQ)K(dU2|I'2) = dQX,U(J:Qa U,Q)

The cost of IT* is
C(IT) = /(m — a4 Jur — uplP)dIT*

u1 = ug by construction, so that |u; — us? = 0, giving us:

O(IT") = / 21 — 2o Pdr (21, ) (/K(du1|x1))
Since [ K (duy|zy) = 1:

o(IT) = / 2y — 2ol d (a1, ) = WP (Py, Q)

Since WP(Px .y, @xv) is the infimal cost,
WP(Px v, Qxp) < C(II") = WP(Px, Qx)
Finally, because the p-Wasserstein distance is the p-th root of the optimal cost,
1/p 1/p
Wo(Px v, Qxyu) = (igf/d((xau)a (@', u))P d’Y) < (/ |21 — 2o d”Y}k() = Wy(Px,Qx).

This entails that:
Wo(Pxu, Qxu) < Wp(Px, Qx)

As required.
For the reverse direction, consider any transport plan v between Px; and Qxy.
Define:

Vx (21, 22) = /u1 /UQV((%?M% (22, u2)) dus duy

This gives a transport plan between Px and ()x. The cost of this plan is less than or
equal to the cost of ~v:

/ (21— 2ol dyx (1, 22) < / / (e — 2al? + Jur — wsl?) dy((ar, wn), (2, u5))

Since W)'(Px, Qx) is the minimum cost over all transport plans between Py and Qx:

WP (Px,Qx) < / |21 — @2|? dyx (21, 22) < C(y)

Z1,22

20

Draft



Taking the p'* root, we have:

5 1/p
W(Pe @) < ([ o= P dctonan) < (inf fal(on). )P ar) = WP Quo

This implies W,(Px, Qx) < Wy(Pxuv, Qxv)-
Combining the two inequalities, we have:

Wy(Pxu, Qxv) = Wy(Px, Qx)

1,22

]

Proposition 23 (Wasserstein Distance with Shared Marginals). If Pxy = Fyx X Pyix
and Qx v = Fx x Quix are two joint distributions with the same marginal distribution
Fx but different conditional distributions Py x and Qux, then:

W,(Pxu,Qxu) = /Wp(PU|X=x7QU|X=x)dFX($)

Proof. We will show that the optimal transport plan works independently within each
slice corresponding to a specific value of X = .

For any joint distribution v on (X x U) x (X x U) with marginals Px ¢ and Qx v,
define:

vx(x1,29) = /m /uz Y((z1,u1), (22, uz)) dus duy

Since both Pxpy and @Qxy have the same marginal Fy, any transport plan v with
these marginals must have:

Fx(ml) if Tr1 = T2

7X<x1,x2) - {0 if T 7£ i)

This means y((z1, u1), (x2, uz)) = 0 whenever x; # .
We can express any transport plan 7 as:

(2, ur), (7, u2)) = Fx () - vz (u1, uz)

where for each x, 7, is a transport plan between Py x—, and Qujx—s-
The total transportation cost is:

Cly) = // d((z1,u1), (22, u2))? dy((z1, 1), (2, u2))
= [[ = a4 s = )y (), o)
Since «y only assigns probability to pairs where x; = 25 = z, and |z — z|P = 0:

C(y) = / s — wal? (), (2, )

- /xe(x) (//|u1 _Uzlpd%(ul,w)) "
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For each x, the minimum value of [ [ |u;—ua|P dvy, (u1, us) is exactly WP (Py\x=2, Quix=z)
by the definition of the Wasserstein distance.
Therefore, the minimum total cost is:

W (Pxu,Qxu) = /Fx(x) W (Py|x=e; Quix=z) dx
:/W5<PU|X:I7QUX:x)dFX(5E)

Taking the p-th root:

1/p
Wy(Pxu,Qxu) = (/ WP (Pyx=2, Quix=c) dFX(SU))

For p = 1, this simplifies to:

Wi(Pxu,Qxu) = /W1<PU|X:m7QUX:w) dFx(x)
= Ep W1 (Pyix, Quix)]
OJ

Theorem 24 (Upper Bound on PATE MSE). Under the stated assumptions, the Mean
Squared Error of the PATE estimator is bounded by:

MSEpprp < L? - (Wy(Px, Sx) +1)* + 0%

where n = Ep, [W1(Py|x, Sux)] represents the degree of unobserved confounding, and o
is the error of the downstream treatment effect estimator.

Proof. Starting with the definition of MSEpsrg, we have:

MSEpars = E (7" = 75)°]

/T(x,u) AFp(z, u) — /f'(x,u) dFS(x,u))Q

/T(x,u) de(m,u)—/T($,u) ng(as,u)—l—/T(:B,u) ng(a:,u)—/%(x,u) ng(a:,u)>2
[ 7 dEs e 0) — aFste, )+ [ Irte,w) - 7o wldFste, u>)2

By Assumption 10 (independence of treatment assignment and site selection):

2

MSEparss = < / (2, W) [dFp(z, 0) — dFs(z, u)]>2 + ( / (2, 1) — #(z, w)]dFs(z, u))

Define 0% = ([[r(z,u) — 7(z,u)]dFs(z, u))Q, which is the sampling error of our esti-
mator of 7. From the perspective of our argument, this is irreducible noise.
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This gives us:

MSEp s — ( / (@ )| dFp(z, 1) — dFs(x, u)])2 +o?

Now, since 7(x,u) is Lipschitz with constant L, we can apply the Kantorovich-
Rubinstein Lemma to get an upper bound on the error due to difference in distributions

P and S: 2
( / 7, w)[dFp (2, u) — dFs(x,u)]) < L?- WP (Pxu, Sxu)

We can now decompose the joint Wasserstein distance between Px g and Sy into
components related to the observed covariates X and unobserved covariates U.

First, define Qx = Px X Sy|x, which has the marginal distribution of X from the
population (Px) but the conditional distribution of U given X from the selected sites
(Svix). Then, since the Wasserstein distance is a proper metric, we can apply the triangle
inequality, so that:

Wi(Px,u, Sxu) < Wi(Pxu,Qxuv) + Wi(@xuv, Sxu)

First, by Proposition 17, we have that:

Wi(Pxu,Qxu) = /WI(PU|X7 Svix) dFpy = Ep, [W1i(Pyix, Suix)]
And by Proposition 16, we have that:

Wi(@xu, Sxu) = Wi(Px, Sx)

So that:
Wi(Pxu, Sxu) < Epy [Wi(Pux, Suix)] + Wi(Px, Sx)

Consistent with practice in sensitivity analysis, let us reparameterize this quantity as
follows:

m = Ep, [W1i(Pyix, Suix)]
Finally, we can return to upper bounding the M S Eparg. We have:

(/T(x’“)[dFP(fUau) — dFS(f”v“”) < L? WE(Pxy, Sxy) < L* - [Wi(Px, Sx) + m)?

Putting this all together, we have:
MSEpari < L* - [Wi(Px, Sx) +m)* + o2

A.2 Proof of Theorem 15

Theorem 25 (Upper Bound on PEHE). Under the stated assumptions, the Precision in
Estimation of Heterogeneous Effect is bounded by:

PEHE < L* - [Wa(Px, Sx) + m)? + o2

where ny = Ep, [Wa(Pyx, Suix)] represents the effect of unobserved confounding, and o2
represents irreducible estimation error.
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Proof. Since treatment effects depend on both observed covariates z and unobserved
covariates u, we work with the full covariate vector ¢ = (z,u) and treatment effects
7(§) = 7(z,u). The PEHE can be written as:

PEHE:i//hPCuu)—%S@;MFdPXU@;m
Using the decomposition 77(z,u) — 7%(z,u) = [7F(z,u) — 79(z,u)] + [75(z,u) —

7#9(z,u)] and applying Assumption 10 (independence of experimental design and site
selection):

PEHE = //[Tp(x,u) — 79z, w)*dPx (2, u) + //[TS(:U, u) — 75 (z,u)*dPx v (x, u)
Define the second term as the irreducible estimation error:
0% = //[Ts(x,u) — 79(2,u)]PdPx v (7, u)
For the first term, we define 7°(x, u) via the optimal transport plan 7* from Px p to

(2, ) // o ) (), d(d o)

By Assumption 9 (7 is L-Lipschitz):

() // (o) w@dww%‘

<L [[ 0 - @l (@' w))

SX7UZ

77 (@, u) — 7% (2,u)| =

Squaring both sides:

(o) = 7ol < 22| [ [l - <a:’,u'>||7r*<<x,u>,d<xcu’>>r

Since [[ 7*((@,u),d(2',u’)) =1, we apply Jensen’s inequality:

U (2, u) — (xCU’)H?T*((fU,U),d(l",u/))r < / 1@z, u) = (&' )7 (2, w), d(2', )
Therefore:
() = S < 22 [ [ ) = @) P (o), da' )
Integrating over Px ¢ and taking the infimum over all transport plans:
[ @ - @ Paru o) < WP Sxo)

Now we decompose the joint Wasserstein distance. Define Qxy = Px X Sy|x and
apply the triangle inequality:

Wy (Pxu, Sxv) < Wa(Pxu, Q@xu) + Wa(Qxu, Sxu)
5Y!

Draft



By Proposition 23 (shared marginals):

Wa(Pxu, Qxu) = Epy [Wa(Pyix, Suix)] = 12

By Proposition 22 (shared conditionals):

Wa(Qx,u, Sxu) = Wa(Px, Sx)

Therefore:
Wa(Px v, Sxu) < n2+ Wa(Px, Sx)

Substituting back:

PEHE < L*W3(Pxy,Sxu) + 05 < L?[n2 + Wa(Px, Sx)])* + o0&

Rearranging:
PEHE < L*[Wa(Px, Sx) + m]* + 0§

This completes the proof. O]

A.3 Proof of Proposition 16

Proof. The goal is to minimize the p-Wasserstein distance W,(Px, Sx) between the em-
pirical distribution of covariates in the population (Px) and the empirical distribution
in the selected sites (Sx). We show that this minimization is equivalent to our mixed
integer linear program.

The p-Wasserstein distance is defined:

Wo(Px, 5x) = ( i /Hx—prdv(m y))l/p

v€l(Px,Sx)

where I'(Px, Sx) is the set of all joint distributions (transport plans) with marginals Py
and S X-

For discrete distributions with finite support, this becomes:

1/p
Wy(Ps. 5x) = (m Sl - %Hp)

where 75, represents the amount of probability mass transported from location z; in
the population to location z; in the selected sites. Since the (1/p)-th power func-
tion is monotonically increasing, minimizing W,(Pyx,Sx) is equivalent to minimizing

> i igllwi — 1P

The constraints arise from the site selection problem structure. The empirical distri-
bution Px assigns equal probability mass |—]13| to each site in the population, yielding:

1P|

Z% — VigP
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The empirical distribution Sy depends on the selection variables s;, assigning mass:

K

Sl L if site i is selected (s; = 1)
€T;) =
X 0 otherwise

where K = leill s; is the number of selected sites. This gives:

Z S .
T = P Vie P
= Xl

1=151

We can only transport probability mass to selected sites: m;; < s; for all 4, j € P. The

site selection budget constraint limits us to at most K sites: Z‘Zi‘l s; < K. All transport
plan entries must be non-negative: m;; > 0 for all ,j € P.

The objective function ZLZ'I lei‘l mij||z; — x;||P directly computes the p-Wasserstein
distance (up to the monotonic transformation) given a valid transport plan. Therefore,

minimizing W,(Px, Sx) subject to selecting at most K sites is equivalent to solving the
stated MILP. O

A.4 Proof of Proposition 19

Proof. We have UB™) = W,(Q®+1, S®) which is Nature’s best response to the current
site selection. It is an upper bound because the optimal site selection S* must minimize
the worst-case distance, so it must perform at least as well as any feasible solution against
Nature’s worst-case attack:

OPT = max W,(Q,S™) < max W,(Q,SW) = UB+Y
QWp(Q,Px)<p p(Q )_QIWp(Q,Px)SP p(Q )

Likewise, LB = maxge g+ Wp(Q, S (1)) is the Researcher’s best response against
all observed scenarios. This provides a lower bound because S®*1) is the optimal solution
to a relaxed version of the original problem:

LB®Y = min max W,(@Q,S)
S:|S|=K Qe o(t+1)

Since we only consider scenarios in QD) rather than all possible adversarial distri-
butions, the relaxed problem is easier than the original:

Q) C {Q : W,(Q, Px) < p}

Therefore, the optimal value of the relaxed problem provides a lower bound on the
original problem:

LB = min  max W,(Q,S) < min max  W,(Q,S) = max  W,(Q,S") = OPT

S:|S|=K QeQ(t+1)  SiS|=K Q:Wp(Q,Px)<p Q:Wp(Q,Px)<p
Combining these inequalities, we have:
LBUY < OPT < UB!HY

So that UB*Y — LB+ < ¢ implies that we have bracketed the true optimal value
within €, guaranteeing that S¢+Y is e-close to S*, as desired. O]
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B Simulation Details

B.1 Randomization versus Optimization

Simulation Design: We generate candidate populations of S = 30 sites with covariates
X ~ N(0,I5) and site-level treatment effects

Us=+v1- 772f(XS) +nNEs,  Es N(07 1) Tis = BTXS +YUs + &gy &is ~ N(0>U2>

Parameter n € {0,0.25,0.5,0.75,1} controls the fraction of treatment heterogeneity un-
explained by observed covariates: n = 0 implies all variation is explained (Us = f(Xj)),
while 7 = 1 implies purely idiosyncratic effects (Us = €5). The population CATE is
7(z) = B x + y+y/1 — n2f(z) with PATE 7P°? = Es, i[ris].

Site Selection Methods: From each population, select K sites using:
Wasserstein Methods: OPT-PATE, OPT-CATE, DRO variants
Random Sampling: Uniform selection across sites
Stratified Sampling: k-means clustering + within-stratum sampling

Stochastic methods use B = 500 draws.

Evaluation: Fit CATE model 7™ (z) on selected sites and compute:

PATE: MSEPATE = (?pop — ?(m,r,b))Q

2

CATE: PEHE = Es, i[7;, — 70" (X,,)]

Where PEHE expectation is over all SV units. Average stochastic methods over B draws,
then pool across R = 10 replications to report performance versus 7.

Output: Performance comparison across 5 signal strength levels, evaluating optimization
versus randomization trade-offs under varying treatment effect predictability.

B.2 Crépon et al.

Data Setup: Load Crépon et al. Morocco microcredit data. Generate 250 base datasets
by sampling |P| € {20,25} sites each. Estimate baseline linear model 7(x) = x? 3 for
treatment effect prediction.

Treatment Effect Generation: For signal strength n € {0.3,0.66,0.9}, generate indi-
vidual effects:

7; = n - standardize(7(x;)) + (1 — 1) - ; + YU,

Where &; ~ N (0,02 ..), Ui ~ N(0,1), and ~y controls unobserved confounding. Pop-
ulation ATE: PATE = KII Y oses Ts-

Distribution Shift: Apply adversarial perturbations with magnitudes in {0.0,0.4,0.6,0.9,1.7,3.4}.
These correspond to multiples of variation observed in the Crépon data.

Site Selection Methods: From each 20-site pool, select 4 sites using:
57
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Random: Uniform sampling (averaged over 15 trials)
Stratification: k-means clustering + within-stratum sampling
SPS: Synthetic Purposive Sampling [49].

Wasserstein DRO: Variants combining PATE/CATE objectives (p € {1,2}) with
robustness radius p* € {0, Qas5, @50, Q75 } calibrated from empirical site distances

Robustness Calibration: Compute pairwise Wasserstein distances between sites. Set
p* =0 (non-robust), 25th/50th/75th percentiles (moderate/high /maximum robustness).

Performance Metrics:
PATE: MSE = (PATE — PATE)?

CATE: PEHE = E[(7(x) — 7(x))?] where 7(x) is linear model fit on selected sites.

Bias-correct for unobserved confounding based on signal strength.

Output: Aggregate performance across 3 X 6 = 18 scenarios (signal x shift combina-
tions), comparing method effectiveness under varying conditions.

C Implementation Details

C.1 LP Relaxations of the MILP and Cutting-Plane Algorithm
LP Relaxation of the MILP

In general, the LP relaxation of an MILP removes the 'mixed integer’ constraint — instead
of requiring that we solve an hard discrete optimization problem with binary indicators,
we solve a relaxed version of the problem, where integers are allowed to take continuous
values in [0, 1], with rounding occuring after a solution to this problem has been found.
Continuous linear programs can be solved in polynomial time, while integer programming
is NP-hard [65, 76]. The site inclusion indicators s; € 0,1 are relaxed to s; € [0, 1].

LP Relaxation of the Cutting-Plane Algorithm

In the robust setting (p > 0), the cutting-plane algorithm alternates between adver-
sarial distribution selection and site selection response. Now we solve two LPs in each
iteration: the adversary maximizes transport cost subject to the Wasserstein budget con-
straint, then the decision maker minimizes maximum transport cost over all observed
adversarial distributions. This provides convergent lower bounds while dramatically re-
ducing computational cost per iteration.

Warm Starting

As a default, to speed up implementation, LP relaxation is used as initialization strategy
for exact MILP solvers in both nonrobust and robust settings. The continuous solution
provides warm start values by initializing binary variables to rounded values of the relaxed
solution, often reducing branch-and-bound iterations by orders of magnitude. This hybrid

o8
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approach combines the speed of LP relaxation with the exactness guarantees of integer
programming, making exact solutions feasible for moderately-sized problems that would
otherwise be computationally prohibitive when solved cold. or problems with n > 100
sites, LP relaxation is used as the default implementation, rather than as the warm start.

C.2 Runtime Experiments

Table 6: Runtime Comparison: Exact MILP vs LP Relaxation for 1-Transport

Sites Selected Combinations Exact (s) LP (s) Speedup

10.00 3.00  1.200000e+-02 0.295  0.064 4.6
15.00 4.00 1.365000e+03 0.143  0.077 1.9
20.00 5.00  1.550400e+04 0.304  0.119 2.6
25.00 6.00 1.771000e+05 0.316  0.127 2.5
30.00 7.00 2.0e+06 0.429  0.190 2.3
40.00 10.00 8.5e+08 1.416  0.391 3.6
50.00 12.00 1.2e+411 1.798  0.587 3.1
75.00 18.00 9.6e+16 2.742  1.953 2.9
100.00 25.00 2.4e+23 18.741  4.386 4.3
150.00 37.00 1.9e+35 616.924 16.755 36.8
200.00 50.00 4.5e+47 —  46.248 —
29
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D Additional Theoretical Results

D.1 Optimal Transport and Survey Sampling
1-Wasserstein transport as balanced sampling on 1-Lipschitz functions

The 1-Wasserstein site selection problem is equivalent to balanced sampling that simul-
taneously controls the sampling error over the entire class of 1-Lipschitz functions. This
provides a continuous generalization of classical balanced sampling techniques.

Theorem 26 (1-Wasserstein Transport as Balanced Sampling). Let X = {z1,...,2,} C
R? be a finite population with uniform empirical measure Py = %Z?Zl 0z, For any
subset S C {1,...,n} with |S| = K, define Sx = + > jes O

The 1-Wasserstein site selection problem

min W;(Px, Sx)
S:[S|=K

is equivalent to the balanced sampling problem

EE:.f Iz zgz.f(xj)

jES

min
S|S|=K fEL'Lp

where Lip; (R?) = {f : R* = R : || f]|1iyp < 1} ids the class of 1-Lipschitz functions.

Proof. The equivalence follows directly from the Kantorovich-Rubinstein duality theorem
for 1-Wasserstein distance.
By the Kantorovich-Rubinstein theorem, for any two probability measures u,v on a

metric space (X, d):
[ran- [ sa

Applying this to our discrete measures Px and Sx:

[ ars— [ ras.

Wi(n,v) = sup
FilfllLip<1

Wi(Px,Sx) = sup

P <t
1
= sup fla) == fla))
FIflip<1 ”2 K;

Therefore:

n

WD) = g

JES

min Wi (Px, Sx) = min  sup
S S Fllfllp<t

This establishes the claimed equivalence. O

Corollary 27 (Uniform Approximation Property). The optimal 1-Wasserstein site se-
lection S* satisfies

< Wi(Px, SY)

1 & 1
E;f(fi)—?z:f(%)

JES*

for every 1-Lipschitz function f, with equality achieved by some f* € Lip,(R?).
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Proof. This follows immediately from the dual representation: the supremum in the
balanced sampling formulation is achieved by some 1-Lipschitz function. ]

Remark 28 (Comparison with Classical Balanced Sampling). Classical balanced sam-
pling typically balances on a finite set of auxiliary variables. The 1-Wasserstein formu-
lation extends this to balance simultaneously over the infinite-dimensional class of all
1-Lipschitz functions, providing stronger representativeness guarantees.

Remark 29 (Geometric Interpretation). A 1-Lipschitz function satisfies |f(x) — f(y)| <
||z — y||, meaning it cannot vary faster than the underlying metric. Balancing over this
class ensures the sample is representative for any ”"geometrically smooth” feature of the
population.

Remark 30 (Computational Implications). While the dual formulation involves an
infinite-dimensional optimization, the primal transport formulation provides a finite-
dimensional LP that implicitly solves the balanced sampling problem over all 1-Lipschitz
functions simultaneously.

2-Wasserstein transport as optimal stratified sampling

When the population size is divisible by the number of selected sites, 2-Wasserstein site
selection is equivalent to optimal balanced stratified sampling. This equivalence provides
theoretical foundation for understanding why transport-based and stratification-based
site selection methods perform similarly in practice.

Theorem 31 (2-Wasserstein Transport as Optimal Stratification). Let X = xq,...,x, C
R? be a finite population with uniform empirical measure Px = %2?:1 0y, Assume N is
divisible by K. For any subset S C 1,...,n with |S| = K, define Sx = > jes O0u;- The
2-Wasserstein site selection problem

min W;(Px, Sx)
Sci,...n,|S|=K

is equivalent to the optimal balanced stratification problem:
mlnz Z |z — @, ||
Jj=11ieC;j

where C = Cy,...,Ck is a balanced partition of 1,...,n with |C;| = & for all j, and
r=(ry,...,rg) withr; € 1,...,n forall j.

Proof. 1 establish equivalence by showing that optimal transport plans have a simple
structure that corresponds exactly to balanced partitions.
The 2-Wasserstein problem requires solving;:

i Z > migllrs — @y

=1 jeS

where II( Py, Sx) contains transport plans satisfying marginal constraints.

Lemma 32 (Elements of optimal plan). For any optimal transport plan 7*, we have
w5 € {0, 1} for all (i, 5).
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Proof. First, I show that the marginal constraints induce balanced partitions, then prove
that plans with closest-site assignment dominate plans that assign mass fractionally.
1

Each population point ¢ has mass l and each selected site j € S must receive mass +
Since % = N/ K , each selected site must receive mass from exactly X % bopulation pomts

Given the dlscrete uniform structure, any feasible transport plan must satisfy > . jes Tij =

%, for each site ¢ — that is, that the mass of each site ¢ must be fully allocated to sites j;
and > m; = % for each site j, that is, that each site j receives mass equal to %

Since each population point has indivisible mass % and each selected site requires

mass from exactly % points, any feasible transport plan corresponds to a partition of the
population into K groups of size %

Suppose for contradiction that some optimal plan 7* has 7}; € (0, %) for population
point ¢ and selected sites j, 7' € S with j # 7/, so that point i fractionally splits its mass
between j and j'.

However, any such fractional assignment can be improved by a reassignment that
respects the marginal constraints. Since the marginal constraints require each population
point to send its full mass % somewhere, and splitting mass between distant points
increases transport cost, the optimal strategy assigns each population point entirely to its
closest selected site among those with remaining capacity. More precisely, any transport
plan with fractional assignments can be converted to a partition-based plan with the same

marginal totals but lower objective value by reassigning each population point entirely

to its closest selected site, contradicting optimality. [
The optimal transport plan 7* induces a partition C; : j € S where C =i : 7j; = %
The target marginal constraint ensures balance: Zzecj +~ = 7 implies |C | = 2. The

objectives are identical up to scaling:
W3 (Px, Sx) = ZZH%—%W
JGS 1€Cy

Now, I show that these problems are equivalent. Given optimal site selection S with

transport plan 7%, construct stratification by setting Cj = i : 7m}; = + and r; = j for

N

je s
Conversely, given optimal stratification (C*, r*), construct site selection S* = {r}, ...,
with transport plan 7;; = % it € C}, and j = r,, zero otherwise. Both mappings preserve
optimality and establish problem equivalence. O

Corollary 33 (Optimality over Standard Stratification). 2-Wasserstein site selection
weakly dominates any stratified sampling procedure that separates stratification and rep-
resentative selection.

Proof. Let Fitandara denote the feasible set of standard stratification, which first fixes a
partition P according to some criterion, then optimizes representatives within strata:

Fstandard = {(P, 1) : P fixed by Stage 1,7; € C; for all j}
Let Fwasserstein denote the feasible set of 2-Wasserstein optimization:
Fwasserstein = { (P, T) : P balanced partition,r; € {1,...,n} for all j}

Since standard stratification restricts representatives to lie within their assigned strata
while 2-Wasserstein allows any population point as a representative, we have:

F standard C F Wasserstein
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. Therefore:

S S

min 33 le—w P min TS - )P

P,r)EFWasserstei eF -
( ) ) Wasserstein j:l iECj standard ]:1 iECj

with equality when stratification produces the globally optimal solution. O

Remark 34. Standard stratification first fixes a partition, then optimizes representatives
within strata. This restricts the feasible set compared to 2-Wasserstein optimization,
which jointly optimizes partitions and representatives with the constraint that represen-
tatives come from the full population.

Remark 35 (CATE solution induces an Optimal Voronoi Partition of the Covariate
Space). The optimal solution creates constrained Voronoi cells where each cell contains
exactly % population points and centroids are chosen from the population to minimize
total within-cell variance.

Remark 36 (Connection to k-means). While k-means allows arbitrary centroids in R%
2-Wasserstein transport constrains centroids to the original population and enforces bal-
anced clusters, making it the discrete, balanced variant of k-means clustering.

Remark 37 (Approximate stratification when n is not divisible by K). When n is
not divisible by K, exact balance is impossible and the stratification equivalence only
approximately holds. In this case, optimal transport creates nearly-balanced partitions
with some population points fractionally splitting mass between clusters. The above
result provides an heuristic understanding of 2-Wasserstein behavior: it approzimates
optimal stratified sampling by creating clusters as balanced as the discrete structure
permits.

D.2 Game Theory and Distributionally Robust Optimization

We can interpret Distributionally Robust Optimization as a game played between Nature
and a Researcher.

Setup

Consider the following game:
Actors

o A Researcher, who selects sites S to minimize representation error wrt P
o Nature, who perturbs the population distribution to maximize representation error
Order of Actions

1. The Researcher observes population sites {z1,...,z,} and chooses site selection
S C|P| with |S] = K

2. Nature observes the Researcher’s choice and selects adversarial distribution ) sub-
ject to budget constraint W,(Q), Px) < p

3. Payoffs are realized based on representation error W2 (Q, Sx)
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Action Spaces

-AResearcher = {S C [n] : |S| = 8}
ANature = {Q < P({xlu v 7'rn}> : Wp(Qu PX) S p}
Payoffs

The Researcher seeks to minimize representation error. Nature seeks to maximize it. The
payoff function is:

u(S, Q) = W2(Q. 5x)

where Sx = % > jes 0z; is the empirical distribution of selected sites.
The Researcher receives payoff —u(.S, Q) and Nature receives payoff u(S, Q) (this is a
Zero-sum game).

Equilibrium Analysis

Definition 38 (Subgame Perfect Equilibrium). The subgame perfect equilibrium (S*, Q*(+))
satisfies:
Nature’s Best Response: For any S € AResearchers

“(S) e WP(Q,Sx) : W,(Q, Py) <
Q*(S) arngp({[r;if%}){ P(Q.Sx) : Wo(Q, Px) < p}

Researcher’s Optimal Strategy:

S*€arg min  WP(Q*(S), Sx)

€ AResearcher

The equilibrium value is:

V*= min max  WP(Q,S
SC[n,|S|=s Q:Wp(Q,Px)<p p(Q X)

Variable Interpretation

Variable Interpretation
z; € {0,1}  Site selection indicator

i >0 Nature’s adversarial distribution

o > 0 Transport from original to adversarial distribution

Brj =0 Transport from adversarial to selected distribution
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Mixed-Integer Linear Program Formulation

The equilibrium can be computed by solving:

min Z Z Brid(xg, ;) (1)
SRR =
subject to Z 2j =25 (2)
j=1
> hwe=1 (3)
k=1
- 1
D aw= Vi (4)
k=1
Z@ik = Vk (5)
=1
Zﬁkj =ur Vk (6)
j=1
n . '
> By=" Vi (7)
k=1 5
Brj < z; Vk,j (8)
> quwd (s, )" < P (9)
ik
zj € {0, 1}, i, qvir, By = 0 (10)

Constraints

Linking Constraint (8): If site j is not selected (z; = 0), then fy; = 0 for all k. Nature
cannot assign transport cost to unselected sites.

Researcher’s Budget Constraint (2): Researcher can choose K sites.

Nature’s Budget Constraint (9): Limits Nature’s ability to perturb the distribution.
Larger p gives Nature more power to create challenging distributions.

Transport Constraints (4)-(7): Ensure valid probability distributions and transport
plans.

Discussion

This game theoretic formulation motivates the cutting-plane algorithm described in Sec-
tion 3.3: the Researcher chooses sites, Nature responds with worst-case distribution, the
Researcher updates their site selection based on all perturbations observed so far, and
the process continues until convergence to Nash equilibrium. This is an illustration of
algorithm design by fictitious play [30, 82].
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