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Motivation: Where To Experiment?

Consider a Researcher who faces the following decision problem:

Select some set of sites S from a universe P , where S ⊂ P .
Run an experiment in each site to learn the PATE or CATE.

‘Double randomization’ may be undesirable in practice, as it controls bias and variance of pop-

ulation estimation quantity in expectation, but may have poor finite sample performance.

Wemaybe able to do better bydirectly optimizing sites tominimize discrepancy between selected

and unselected sites by optimization procedures (Kasy, 2016; Bansal et al., 2022; Harshaw et al.,

2023; Egami and Lee, 2024).

What to Minimize?

Suppose a Researcher has a budget constraint: they can run experiments in exactlyK sites.

For the PATE, we want to solve the following problem:

min
S:||S||0≤K

(Ei∼P [Yi(1)− Yi(0)]− Ei∼S[Yi(1)− Yi(0)])2

= min
S:||S||0≤K

(E[Ei∼P [Yi(1)− Yi(0)]|X = x]− E[Ei∼S[Yi(1)− Yi(0)]|X = x])2

= min
S:||S||0≤K

(∫
X

∫
i
Yi(1)− Yi(0)|X = x d

[
fP(X = x)− fS(X = x)

])2

Since we have not yet run the experiment, the first term can be ignored, and we instead wish to

minimize:

min
S

∫
X

d[fP(X = x)− fS(X = x)] s.t. ||S||0 ≤ K

This is a discrepancy minimization problem, with an `0-norm constraint on S.

Weighted Quantile DiscrepancyMinimization

We have the following approximation to this discrepancy minimization problem:∫
fP (X)− fS(X) dx = lim

||∆Xt
||→0

T∑
t=1

[F P (X)− F S(X)]∆Xt

=
T∑

t=1
[Qt(X)−Qt(X(S))]

+
T∑

t=1

∫ t

t−1
[F P (X)− F S(X)]− [Qt(X)−Qt(X(S))] dx

≈
T∑

t=1
[Qt(X)−Qt(X(S))]

We can use the empirical analogues Q̂t(X) above, and our problem then becomes to minimize
the observed distance between the two empirical CDFs. This motivates our loss function, the

Weighted Quantile Discrepancy (Fan et al., 2022):

WQD2(X, X(S), υ) ≡
T∑

t=1
υt [Qt(X)−Qt(X(S))]2

Best Subsets: A Modern Approach

Recall the classic Best Subsets problem:

min
S
||Y −X ′β||2 s.t. ||β||0 ≤ K

Best Subsets generates K-sparse solutions, but is nonconvex and NP-hard (Natarajan, 1995).
Implementations of Best Subsets have eitherworked only for small sample sizes (leaps), or lacked
optimality guarantees (stepwise selection).

Using Best Subsets To Select Sites

Bertsimas et al. (2015) use recent progress in Mixed Integer Optimization to develop a Best

Subsets algorithm that generates provably optimal solutions for practical size problem instances

with short computation time.

Whereas Best Subsets is typically used on data structures that are of dimension {I, I × J}, we
first generate a statistic of our observed covariates to use as our outcome vector, and ‘rotate’

our data, so that we consider a data matrix that is {J, J × S}. That is, we use site information to
predict functions of covariates.

Consider the following problem:

min
w

T∑
t=1

J∑
j=1
||Q̂t(Xj)− w′Xj||2 s.t. ||w||0 ≤ K

We iterate over a grid of quantiles, and choose a set of sites that minimizes the discrepancy over

all quantiles.

An Ensemble: Subsampling andWeighted Majority Voting

Ensemble methods can be used to improve the generalization performance of a model (Zhou,

2012), by reducing overfitting. The goal is to simulate endogenous distribution shift, by splitting

our observed data into smaller subsamples, whichwill have subsamplemoments containedwithin

a small neighborhood of overall moments. In our setup, they can also be used to reduce the

dependence of the model on specific covariates.

We use subsampling, an approach studied by Wager and Athey (2018). Define:

The Hard-thresholding operator HK(·) (Donoho and Johnstone, 1994)

The 1-Wasserstein Distance: W1(P, S) =
∫ 1

0 |F
−1
P (x)− F−1

S (x)| dx

Algorithm: Ensemble Best Subsets for Site Selection

Input: Covariates X , Vector of quantiles T , Subset size K , Iterations B

Output: Selected site indicators Ŝ

For b ∈ B :
1. Split X into X

(b)
test, X

(b)
train

For t ∈ T :

2. Ŝt← Best_Subsets(X
(b)
train

, Q̂t(X
(b)
train

) K)

3. `(X(b)
test, Ŝ(b))← W1[X

(b)
test, X

(b)
test(Ŝ)] + W1[Q̂t(X

(b)
test), Q̂t(X

(b)
test(Ŝ))]

4. β
(b)
st ←


1− Softmaxt


√√√√ e`(X(b)

test,Ŝ
(b))

1 + e`(X(b)
test,Ŝ

(b))

 s ∈ Ŝ
(b)
t

0 o.w

end

end

5. β̂K ← HK

[{∑
b∈B β

(b)
s

}S

s=1

]

6. Return Ŝ ←
(
I{β̂K

s 6= 0}
)S

s=1
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Application: Auerbach and Thachil, 2018

(a) Bhopal (b) Jaipur

Figure 1. 110 settlements studied in Auerbach and Thachil, 2018. We use these sites as a finite population to

study the performance of our method. We partition the sites into observed and unobserved, run our method on

the observed sites, and estimate in-sample and out-of-sample error, based on the Wasserstein distance between

the (unobserved, synthetic) treatment effects in the selected sites and the treatment effects in the relevant

comparison population.

1. Denote the set of all sites as our population, P .
2. Generate ITEs using individual-level covariate data, and treat these ITEs as the ground truth. This gives us both
the PATE and the CATE.

For b ∈ B:

3. Randomly sample a subpopulation of sites P (b) ⊂ P . This is taken to be the population of interest, for which
the analyst observes aggregated site-level covariate data.

4. Use a site selection method to select a subset of K sites from the subpopulation P (b)

5.a) CATE loss: Record the empirical 1-Wasserstein distance between:

In-sample loss: The (unobserved) distribution of ITEs in the subpopulation and the distribution of ITEs in

the selected sample.

Out-of-sample loss The (unobserved) distribution of ITEs in the population and the distribution of ITEs in

the selected sample.

b) PATE loss: Record the empirical 1-Wasserstein distance between:

In-sample loss: The (unobserved) distribution of SATEs in the subpopulation and the distribution of SATEs in the selected sample.

Out-of-sample loss The (unobserved) distribution of SATEs in the population and the distribution of SATEs in the selected sample.

c) Oracle loss: By brute force search, find the site selection that minimizes each of the above losses with respect to the unobserved

distribution of synthetic treatment effects. This procedure is infeasible in general because treatment effects are not observed,

units outside the population are not observed, and brute force search is computationally infeasible for larger sample sizes.

6. Aggregate losses across all replications.
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Site Selection Simulation, Auerbach and Thachil (2018)
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Table 1. Simulation Results, Auerbach and Thachil (2018)

SPS Best Subsets Ensemble

PATE (In-sample) 0.01576215 0.01508495
PATE (Out-of-Sample) 0.02469087 0.02217600
CATE (In-sample) 0.01573571 0.01396278
CATE (Out-of-Sample) 0.02332683 0.02228081
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