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Abstract

Choosing where to conduct an experiment when a researcher is faced with a universe of possible
sites is an important active area of research. This is a well-defined discrete optimization problem, in
which an experimenter must make a discrete choice when faced with a larger set of possible sites. We
propose a novel machine learning method for selecting experimental sites when either the Population
Average Treatment Effect or the Conditional Average Treatment Effect is of interest. Recent advances in
Mixed Integer Optimization have dramatically improved the practical utility of the Best Subset selection
method in machine learning. We develop an ensemble method using Best Subsets as a base learner, and
use it to solve a novel representation of the site selection problem as a weighted-quantile discrepancy
minimization problem. We show that this method has superior average-case performance compared to
alternative methods across a set of naturalistic simulation studies.
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1 Introduction

An intuitive approach to site selection is ‘double randomization’, in which a set of sites is randomly selected
from a target population, before a randomized experiment is conducted in each site. While randomization
benefits from strong asymptotic guarantees that allow for valid causal inference, ‘double randomization’
for multi-site experimental designs has significant drawbacks compared to a two-stage procedure in which
sites are first purposively selected, before a randomized experiment is conducted in each site.

The intuition is that randomization can be inefficient for estimating a population quantity of interest,
because it can assign non-zero probability mass to treatment assignment profiles that do not well-represent
the quantity that we are interested in. Randomization can ensure that samples are balanced in expectation,
but this property does not guarantee representativeness of any given sample drawn by randomization. In
practice, we might be able to do better by purposively selecting sites, then randomizing conditional on a
site selection (Kasy, 2016; Kallus, 2018). Further, the choice of sites itself may be a nuisance parameter:
since we are running an experiment conditional on site selections, we can be unconcerned about the effects
of choosing sites on the internal validity, except to the extent that they allow us to extrapolate. Optimizing
non-randomly at the site selection level does not harm the causal inference guarantees we get from running
an experiment at each chosen site.

The problem may be particularly acute when selecting small numbers of sites from a diverse population.
Adapting a result of Li and Ding (2016), the variance of a randomized site selection can be given as follows.
Let {7s,...,7p} be a finite population of sites, from which we draw a random sample of size S < N. The

variance of the sample 7¢ under random sampling can be shown to be:

P
Var(rs) = (; — ]1]) ﬁ ;(Ts —7n)? (1)

Under regularity assumptions, this quantity is asymptotically normal. Convergence to the true pop-
ulation variance may be guaranteed by randomization, but there is no guarantee that any particular
randomized assignment of site selections will be representative of a larger population. In situations when
we are considering a small number of possible experimental sites sampled from a larger population, where
S << N, we might be able to do better by purposive selection. The alternative would be to minimize

this quantity directly, by choosing a subset S that purposively minimizes the mean squared error of the



decision:

min MSE[r —7(S)] = d(r(S) =) stl|Slh< K (2)
seS

To solve problems of this kind, we present a novel ensemble learning method that benefits from recent
developments in Mixed Integer Optimization that have led to significant performance improvements for
the classical Best Subsets method in machine learning (Bertsimas et al., 2015). Best Subsets finds K-
sparse solutions to estimation problems, which makes it especially appropriate for site selection problems
in which a Researcher faces a budget constraint, in which they can experiment in exactly K sites. Further,
K-sparse solutions to £y minimization problems can be shown to have better worst-case performance than
approximate solutions based on ¢; minimization (for instance, the LASSO) (Zhang et al., 2014). While
Best Subsets has historically been less popular than variants of LASSO and Ridge regression for regularized
estimation problems, this has mostly been because, until recently, algorithms to implement Best Subsets
have either been computationally infeasible for medium-sized problem instances, or do not find optimal
solutions. With the advent of new tools from implementing Best Subsets, it is now possible to use it for
large-sized problem instances. Further, this improved performance makes it possible to develop ensemble
methods based on Best Subsets, in which the base algorithm is implemented many times with updating
based on empirical losses (Zhou, 2012; Littlestone and Warmuth, 1994).

We show that our method has favourable empirical performance to rival methods, in terms of both in-
sample performance and out-of-sample performance, in a naturalistic simulation study based on Auerbach
and Thachil (2018). Because this study involves a large universe of sites, it is possible to assess both the
internal and external validity of our approach by evaluating the sites chosen by our and rival methods on
both an ‘observed’ and ‘unobserved’ set of sites. This gives us insight into the finite sample performance of
our method, and its performance in a context in which realistic distribution shift is induced by differences
between unobserved and observed sets.

Our method allows Researchers to combine information from pilot studies, where they have been
undertaken, to improve the quality of the site selection. Without additional information, our approach
seeks to minimize the observed Wasserstein distance, a metric used in the optimal transport literature,
between sites included and not included sites. However, with some knowledge of the outcome model, from

a pilot study, we can weight the information in the covariates, so that more prognostic covariates are



given more weight in the site selection procedure. This can close the gap between observed and oracle
performance.

Our method also allows Researchers to incorporate welfare weighting in their analysis. We use a
Weighted Quantile Discrepancy metric to measure the distance between distributions (Fan et al., 2022).!
While, by default, quantiles are not weighted, to ensure that we choose sites that minimize an approximation
to the ECDF, Researchers can incorporate welfare-weights and prior knowledge to ensure that the resulting
selection places greater weight on sites that better represent the bottom a-% of units, for instance.

Our method is applicable to a number of other practical problems in statistics and Political Science.
First, it can be used to select units to enroll in an experiment. Second, it can be used to assign treatment
assignments to a fixed set of individuals. Finally, we can also use this method for cluster randomization,
when a Researcher seeks to assign treatment at the cluster-level, once sites have already been selected.

To our knowledge, our paper is the first to propose an ensemble method based on Best Subsets. It is
also the first to use weighted-quantile discrepancy minimization as a metric in the site selection problem.

Several notes of caution are required. The first is that there may be no one ‘best’ site selection to reduce
generalization error from one context to another. Especially under distribution shift, it is always possible
that the population differs from the observed distribution of covariates in ways that cannot be accounted for
ex ante. A follow-up line of research is to incorporate insights from Distributionally-Robust Optimization
into site selection (Duchi and Namkoong, 2017, 2020). These methods consider optimization procedures
that improve worst-case performance when the true distribution is ‘close’ to the observed distribution, in
terms of f-divergence, Wasserstein distance, or another discrepancy metric. Such methods offer improved
worst-case performance, but at some loss to average case performance, and under assumptions about the
nature of the distribution shift. The second is that prognostic covariates are necessary, and that site
selection optimization procedures cannot work well in the presence of unmeasured confounders (Bicalho
et al., 2022). Any site selection method based on discrepancy minimization requires that covariates are
relevant to the outcome. There is no alternative to good data collection: an automated site selection tool

cannot help you if you do not collect good covariate data ex ante.

!This is related to minimizing the observed 1-Wasserstein distance, which can be expressed as the distance between two CDFs.



1.1 Literature Review

Discrepancy minimization, in math and computer science (Chazelle, 2000; Beck and Fiala, 1981; Bansal
et al., 2022), studies the problem of finding a ‘colouring’ (set of inclusion indicators) of a set that minimizes
an error function between the sets that are assigned a given colour and the sets that are not. A set of
fundamental results in this literature provide bounds on the efficiency of procedures for selecting colourings
of sets that minimize the discrepancy (maximize the representativeness) between coloured and uncoloured
sets.

These results have been applied to the problem of covariate balancing, in which a researcher aims
to find a set of vectors that minimize observed discrepancy between covariates in the treatment group
and covariates in the control group. Harshaw et al. (2023) apply the Gram-Schmidt Walk, a method for
solving the discrepancy minimization problem developed by Bansal et al. (2017), to the problem of finding
a covariate balancing vector without randomization.

Several approaches to developing site selection methods have been proposed in the literature in statistics,
computer science, and political science.

Addanki et al. (2022) use the Gram-Schmidt Walk to both 1) select units for inclusion into an exper-
iment and 2) find a treatment assignment vector that optimally balances assignments across units. This
approach benefits from the statistical guarantees of the Gram-Schmidt process for solving discrepancy
minimization problems, but does not produce vectors that select an exact number of sites for inclusion in
an experiment.

Egami and Lee (2024) develop a method for site selection based on the Synthetic Control Method
(Alberto Abadie and Hainmueller, 2010; Abadie et al., 2015; Xu, 2017; Sun et al., 2023). They choose
sites that, up to weights, well-approximate sites that are not included in a given selection. This approach
emphasizes choosing sites that create a large convex hull, within which excluded sites are contained.

Tipton (2013) proposes a method that uses cluster analysis to identify strata of sites. Given those
strata, sites are then randomly sampled from each stratum.

Gechter et al. (2024) develops a Bayesian method, in which a prior distribution over treatment effects
based on pilot data, and a prior welfare function for aggregating estimated treatment effects, are assumed.
This enables the Researcher to use Monte Carlo simulations to evaluate the expected welfare under different

site selections: this simulated posterior then generates estimates of the best (from the perspective of ex



post welfare) subset of sites in which to experiment.

We also contribute to a literature on ensemble methods in political science. Montgomery et al. (2012)
introduced ensemble methods to political science by motivating Ensemble Bayesian Model Averaging.
Grimmer et al. (2017, 2021) provide overview of ensemble methods in political science, and Samii et al.
(2016) applies the procedure to analysing the results of an experiment to reduce recidivism in Colombia
More recently, ensemble methods have been used across causal inference to learn heterogeneous treatment
effects, with Random Forests, the SuperLearner approach, and the X-Learner being three recent examples
of popular methodologies used by social scientists to learn heterogeneous causal effects (Wager and Athey,
2018; Athey et al., 2019; van der Laan et al., 2007; van der Laan and Petersen, 2007; van der Laan and
Rose, 2011; Kiinzel et al., 2019).

Our paper is relevant to an important literature in External Validity, generalization, and distribution
shift. External Validity has emerged as a key concern in empirical research in the social sciences following
important an critique from (Deaton and Cartwright, 2018). Shadish et al. (2002) describe representation
(of a particular population) and generalization (to a particular target population) as the key goals of
external validity. Slough and Tyson (2023) develop a formal framework for external validity based on
Blackwell experiments, which offers an information-geometric formulation of the notion of a space of
experiments (Murray and Rice, 1993). Within their framework, we consider the problem of minimizing
target discrepancy between a set of settings S and a universe of settings P. Findley et al. (2016) and
Hartman (2021) provide formal frameworks for thinking about external validity in applied research contexts.
Our goal is to consider the set of sites that are C-valid based on observables. Like Hartman (2021),
we require a contextual exclusion restriction, or the assumption of no unobserved moderators, in order
successfully choose sites.

Our approach is also related conceptually to response surface methods and optimal experimental design
in the response surface literature (Box and Draper, 1987,7). Our covariate information represents an prior
response surface over the set of sites, and our goal is to choose a set of sites with a similar response surface
to that of the universe of observed sites. With pilot data about the response surface, we can choose a set
of sites that minimizes the posterior divergence between a set of sites and the universe of observed sites,

given the pilot data. We consider this proposal in an extension.



2 Method: A Best Subsets Ensemble for Site Selection

2.1 Problem of Site Selection

A Researcher observes a universe of potential experimental sites, which we denote P = {s1,...,sp}. These

sites constitute the population. We suppose that the Researcher observes site-level characteristics across

J,P

multiple covariates for each potential site in the study. That is, we observe a data matrix X = {X,} i1s=10

where J is the dimension of covariates and P is the number of sites in the population.
The Researcher must choose a proper subset S C P of sites, subject to an fg-norm, or cardinality
constraint on S.> That is, we have that, for some 0 < K < || P|o:

[1Pllo

1Slo=>_ s, € S} <K (3)

s=1
We suppose that the Researcher is interested in either the Population Average Treatment Effect (PATE)

or the Conditional Average Treatment Effect (CATE) over the full population:

Definition 1 (Causal Estimands)
PATE = E;p[¥i(1) - Y;(0)] CATE = B p[Yi(1) - Y;(0)|X = 1]

Once the experiment is conducted, the Researcher will observe only the sample analogues to these
quantities. But which sample analogue the Researcher will observe will depend on which sites are chosen
for experimentation.

Let £: 8 x X — R a loss function. Then, the researcher’s problem is to solve:

Problem 1 (Infeasible Site Selection Problem)

min {E[L(PATE — SATE(S))]}  st. ||S]o< K

Problem 1 is infeasible, for the simple reason that, since the experiment has not yet been conducted,

neither potential outcome can be observed.?

?[|/lo is the £o norm, so that ||S|lo=#{s:s€ S} =, »{ss € S}
3 After Holland (1986), we might call this the Fundamental Problem of Not Having Gathered Any Outcome Data Yet.



2.2 Using Covariates As Proxies for Potential Outcomes

We can, however, use covariate information as proxies for potential outcomes. In order to do this effectively,
we need to assume that covariate information is at least somewhat prognostic for potential outcomes,
and that it is unconfounded: that there are no interactions between observed covariates and unobserved

confounders.

Assumption 1 (No unobserved moderators)

Vi, U : Yi(1) — Y;(0)|X 1L U

Since, by Assumption 1, potential outcomes do not depend on unobserved confounders, we can write
treatment effects as an additive function of observed covariates, so that 7; = g(X;) +¢; (Imai et al., 2008).
This assumption is also known as the Contextual Exclusion Restriction (Egami and Hartman, 2023). In
7?7, we consider a partial relaxation of this assumption, in which we allow treatment effects

This allows us to perform the following decomposition of the error due to site selection:

E[L(PATE — SATE(S))] = Eiwp[Yi(1) — Yi(0)] — Eius[Yi(1) — Y;(0)] (4)
= Eiwplg(Xs) + €] — Eins[g(Xi) + €] (5)
zlﬂxuem—La&ue& (6)
= [gee)aeo - £50x) (7)

Since g(X) is unknown, we replace it with the identity function.* This gives us the following discrepancy

minimization problem (Banaszczyk, 1998; Chazelle, 2000; Levy et al., 2017; Bansal et al., 2022):

Problem 2 (Discrepancy minimization for the PATE)

min / Xd[fF(X) - fS(X)] st |1Slh< K

4In section 4.1, we consider the case where an estimate §(X) is available from a pilot study. In general, this will improve the
performance of the method.



Likewise, from Hill (2011), we take the following definition of error in estimating individual treatment

effects (see also Ding et al. (2017); Tipton and Mamakos (2023)):

Definition 2 (Precision in Estimation of Heterogeneous Effect (PEHE))

€EPEHE = /X(f'(x) - 7'(33))217(95) dx

The Researcher wishes to minimize, by choice of .S,

min  eppin(S) = / (#(x) — 7(2))2f " (2) — £5(2) (8)

X

(#(z) — ()25 (2) + /

X

The first term in each integral is unobserved, as before, which means that the minimization problem

becomes:

Problem 3 (Discrepancy minimization for the CATE)

msz'n/x Py — fS@) st 1Sl < K

2.3 Best Subsets: A Brief Overview

The classical best subset selection problem in statistics and machine learning is the problem of choosing
some finite subset of predictors that best explain the outcome in a regression model (Hocking and Leslie,
1967; Beale et al., 1967; Breiman, 1995; Miller, 2002; James et al., 2021; Thompson, 2022). This is modelled

as the optimization problem:

1L 2
min 53 (V- Xi8)" st Bl <K (9)
i=1
Where J is the dimension of the covariates, K is an integer in (0,min{n — 1,.J}). Best subsets has
the attractive feature of imposing a K-sparse solution — that is, one in which exactly K coefficients are
non-zero — on the regression problem.
Until recently, however, provably optimal solutions to this problem in the NV < P regime were generally

computationally infeasible. Best subset selection is nonconvex and NP-hard (Natarajan, 1995). This is

because any exact solution by brute force search involves O ((IIE)) The implementation leaps, based on



a branch-and-bound technique, does not work for p > 30 (Furnival and Wilson, 1974). Greedy methods
based on heuristics, such as stepwise search, are not guaranteed to find optimal solutions.

Recent work by Bertsimas et al. (2015) uses advances in Mixed Integer Optimization to develop an
algorithm to implement best subsets with provably optimal solutions in the N < P regime, and short
runtimes.” The empirical performance of this method is studied by Hastie et al. (2020), who find that it
generally outperforms the lasso in high signal-to-noise regimes. Two packages to implement best subsets
using MIO solvers in R, Best Subsets and rss have been developed by Hastie et al. (2020) and Thompson
(2022).

2.4 Using Best Subsets to Select Sites

In order to use Best Subsets to solve Problem 2 and Problem 3, our goal is to minimize the observed
discrepancy between a subset of sites and the full population of sites.Whereas Best Subsets is usually
applied to a data structure that is N x J, we here apply it to a data structure that is J x S. That is, we
treat sites as predictors, and statistics of the covariates as our outcome. The goal is to pick the K sites
that best predict features of the covariate distribution.

Given a K-sparse solution to this site selection problem, it is straightforward to extract the set of sites
that ‘best’ predicted statistics of the covariates. These are the sites that solve the discrepancy minimization

problems described above.

2.4.1 Site Selection for the PATE

To solve Problem 2, we want to minimize the discrepancy at the average. A simple argument shows that
minimizing the fo norm also minimizes the KL divergence between two distributions; Best Subsets then
finds the K-sparse solution that minimizes the KL divergence between f¥ and f5.

We implement the following estimation problem using Best Subsets:

min %Z(Qg,(XJ) — Xlw)? st Jwllo < K (10)

SFirst, projected gradient descent is used to find an approximate solution to the best subsets problem. This procedure is
equivalent to using stochastic gradient descent to find regression coefficients, at each step enforcing the sparsity of the
solution by zeroing out all but the K largest coefficients. Then, these solutions are used to generate bounds on the MIO
formulation of the best subsets problem, which is then solved using an MIO solver. Further detail on this method is contained
in Section 6.

10



Where Qi(x) = inf{z : F(z) >t} is the quantile function, and Q;(x) is its empirical analogue.® We
use the median as a Huber-robust estimate of the mean (Huber, 1981).

Note that we no longer explicitly constrain the cardinality of the set S: instead, the weight vector w
is forced to be K-sparse, which induces K-sparsity of the set S. Second, the weights themselves are not

meaningful in this problem: we are only interested in the variables that are in fact selected by the model.

2.4.2 Site Selection for the CATE
To solve Problem 3, we implement the following estimation procedure using Best Subsets:

T J
.1 A
min o tg 1 g 1(Qt(Xj) - X]’-w)2 st JJwl|lo < K (11)
= J:

Here the goal is to minimize the Weighted Quantile Discrepancy between f7(X) and f° (Fan et al.,

2022). The Weighted Quantile Discrepancy is defined:

T
WQD?[X,X(S),v] = > uQu(X) — Qu(X(S))]? (12)
t=1

Where v is a weight vector.” The idea is to get better minimization of the discrepancy between f(X)
and f5(X) by quantizing the empirical CDFs, finding the sites that best predict as many quantiles of the
population CDF as possible.

In general we have:

T
/fP(X)—fS(X)dx: im Y [fP(X) - FF(X))Ax,

The empirical quantile function is defined Q;(x) = inf {57 H{Xn <z} >t}

"The idea is that user specified weights allow the researcher to estimate welfare effects: for instance, by choosing a rule like
vy = 1 if t < o, the researcher can consider treatment effects for the bottom o quantiles of the distribution, assuming that
covariates are appropriately coded, and some prior knoweldge of the direction of the effects of moderators. In what follows,
we take vy = 17.

11



Or, in words, that the discrepancy is the difference between the sum of the empirical quantile discrep-

ancies plus quantization error.

2.5 An Ensemble Method: Subsampling with Weighted Majority Voting

Our goal is to develop a method with improved out-of-sample performance. Ensemble methods, in which
the predictions from a base leaner are aggregated to form a final prediction, are a popular tool in machine
learning and causal inference that are increasingly used in the social sciences (Zhou, 2012; Montgomery
et al., 2012; Samii et al., 2016; Grimmer et al., 2017; Kiinzel et al., 2019; Grimmer et al., 2021; Athey
et al.,, 2019). The classic best subsets problem was the focus of much early ensemble research, due to
the computational intractability of finding exact solutions (Breiman, 1995, 1996). Here, we use ensemble
methods as a form of implicit regularization: to prevent overfitting to observed data, and thereby to
improve generalization performance. The approach is broadly inspired by the Weighted Majority Voting
algorithm of Littlestone and Warmuth (1994).

The general idea is to generate many test-training sample splits, generate site selections for each training
set, and evaluate them on our hold out testing set. We then take the observed empirical loss on the testing
set, and use this to determine each submodel’s contribution to the overall prediction of which sites to use.

The goal is to build robustness to endogenous distribution shifts observed in the data: instead of
solving the site selection problem once, we induce distribution shifts by solving the site selection problem
for subsets of the data, and then assessing the ability of that prediction to generalize to unseen data. At
each iteration, we draw a new test-training split, in which we train the model on 7%of the data and test
it on 1 — 7%. We generally set 7 = .9.

Formally, let S®) be the prediction of a Best Subsets procedure at an iteration b € B, let 3® be a
weight vector, and let Hg be the hard thresholding operator, which sets all but the K largest elements of
a vector to zero (Donoho and Johnstone, 1994)%.

Then, our our final site selection for a given set of predictions is the aggregated prediction:

S =Hg [Z B §®) (13)

Let £: X,0 — R be a loss function, E(X , S ) be the observed empirical loss on our selected sites. Then

8The hard-thresholding operator. For a vector X = {X1,..., Xy} take the ordered vector {X(1),..., X(n)}. Then, for K < n,
HK(X) = {X(l)y .. .,X(K)7O,. .. ,O}

12



weights are defined as follows:

0X2,5®)
g —q |
1+ ef(ng)mg(b))
Which is a normalization of the loss: larger losses mean that the contribution of that model to the

eventual prediction is smaller.

2.5.1 Loss functions

To motivate our loss functions, we first define two distance metrics:

Definition 3 (1-Wasserstein Distance)

Wi(P, §) = / P (r) — F3'(7) dr

Which has a representation as the total absolute distance between the empirical CDF's of the treatment
effect in the population and the selected sample. The Wasserstein distance is frequently used in the
optimal transport and distributionally robust optimization literatures as a distance metric on the space of
distributions (Villani, 2003; Azizian et al., 2023). It has an intuitive interpretation as the smallest amount
of ‘mass’ needed to transform one distribution into another. Using the Wasserstein metric in our loss
function is intended to upweight sites that incur the least transportation loss from training to test context.
That is, it upweights sites that generalize better from one context to another.

We design a loss function that places weight on both the overall discrepancy between the test set and
its selected subset; and on specific quantiles of the test set. This is intended to ensure good performance
both overall and with respect to the specific quantile prediction task.

In practice, we choose as our loss function, for a given quantile ¢:

U(X, X(9)) = Wi[X, X(9)] + W1[Q:(X), Qe(X(S))]

Where, as above, we set t = .5 (i.e., the median) when selecting sites for the PATE, and iterate over a
grid of quantiles when selecting sites for the CATE.

Our weights are decreasing functions of these empirical losses. Specifically, we have:

13



1 — Softmax {\/logit_llf(X,X(S’)) ses
Bst =

0 o0.W.

This imposes a distributional requirement: we require that our chosen sites do well at a weighted

majority of quantiles of our observed data.

2.6 Algorithms

Algorithm 1: Best Subsets for the PATE

1 function BS_PATE (X, T(X) = median(X), K, B)

Input : Matrix of predictors X, Statistic 7'(X), Subset size K, Iterations B

Output: Selected site indicators S

2 for b € B do
s | Split X into X%, x{"
4 SO = Best,Subsets(Xff;in, K)
5 e(Xt(ggta S®) [Xt(ggtht(gt(S”
- e/v’(XéﬁzwsA(bi) s
6 ng) — 1+ ee(Xt(:s)wS(b))
0 o.w
7 end

0]

B+ Hy [{ZbeB ﬁgb)}j:l]
§ o (upx 20)”

10 Return S

©
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Algorithm 2: Best Subsets for the CATE

1 function BBS_ CATE (X, T, K, B)
Input : Matrix of site characteristics X, Vector of quantiles T', Subset size K, Iterations B

Output: Selected site indicators S

2 for b € B do

s | Split X into X%, x).

4 fort €T do

5 gt(b) — Best,Subsets(Xt(fim, Qi(X), K)

6 || HXE S e WX, XS

X {h S e g®

7 lossglz) — 1+ l(X(2,87) K

0 o.w

8 end

9 fort € T do

1- Softmam(lossglz)) s € S‘f’)

10 BY
0 o.w
11 end
12 end
1o 4% B [{ e Ceer 80|
14 S (H{Bf # 0}>SS:
15 Return S
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3 Empirical applications

To assess our method, we run simulations based on three studies from political science, economics, and
public health (Hill, 2011; Auerbach and Thachil, 2018; Louizos et al., 2017). Our goal is to assess both
in-sample performance and out-of-sample performance. That is, how well the selected sites describe the
observed covariate data, under the assumption of no unobserved moderators; and how well the sites describe
unobserved sites. Out-of-sample performance gives us some sense of how well the observed sites generalize
to unseen examples.

Throughout, we compare the performance of our model selection tool to a the Synthetic Purposive
Sampling method proposed by Egami and Lee (2024). We also calculate an infeasible oracle estimate,

based on unobserved, synthetic treatment effects, generated under the model

3.1 Settlements: Auerbach and Thachil, 2018

0 3 6 Miles
o 3 6 Mios

0 a 8 Kilometers 0 35 7 Kilometers

Figure 1: Bhopal Figure 2: Jaipur

We design a naturalistic simulation study, based on Auerbach and Thachil (2018), which allows us to study
both the in-sample and out-of-sample performance of our site selection method. Auerbach and Thachil
(2018) conducted a conjoint experiment across a sample of 110 informal urban settlements in Bhopal and
Jaipur, India. Their goal was to study resident preferences for political brokers, whose role is to create

linkages between political parties and local voters. A main finding from their paper is that residents were
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around 13.3% more likely to prefer a broker with a bachelor’s degree, which Auerbach and Thachil interpret
as a measure of a broker’s capability to extract resources from the party.

This setting is a good test of our method for several reasons. First, the authors measured a variety of
settlement-level covariates, some of which are predictive of the outcome. This allows us to generate syn-
thetic treatment effects as a function of observed covariates to use as the ‘ground truth’ in our simulation.
Second, because the authors conducted a study in 110 settlements, we have a large and well-defined study
population. We can then partition this population into an observed subpopulation, and an unobserved
larger population, to assess how well the sites selected in the subpopulation represent sites the unobserved
larger population. This creates a naturalistic case study of distribution shift: covariate values will nec-
essarily shift across selections into site. These shifts are not necessarily just due to random sampling,
either, as we have no guarantee that all sites are identical based solely on observed characteristics. It is
plausible that we observe both sampling uncertainty and distributional uncertainty across both contexts

(Rothenh&usler and Biithlmann, 2023).

3.1.1 Simulation approach

Our general approach is as follows:

1. Denote the set of all sites as our population, P.

2. Generate ITEs using individual-level covariate data, and treat these ITEs as the ground truth. This

gives us both the PATE and the CATE.

For b € B:

3. Randomly sample a subpopulation of sites P(®) ¢ P. This is taken to be the population of

interest, for which the analyst observes aggregated site-level covariate data.
4. Use a site selection method to select a subset of K sites from the subpopulation P®)
5. a) CATE loss: Record the empirical 1-Wasserstein distance between:
- In-sample loss: The (unobserved) distribution of ITEs in the subpopulation and the
distribution of ITEs in the selected sample.

- Qut-of-sample loss The (unobserved) distribution of ITEs in the population and the

distribution of ITEs in the selected sample.
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b) PATE loss: Record the empirical 1-Wasserstein distance between:
- In-sample loss: The (unobserved) distribution of SATEs in the subpopulation and the
distribution of SATEs in the selected sample.
- Qut-of-sample loss The (unobserved) distribution of SATEs in the population and the
distribution of SATEs in the selected sample.

c) Oracle loss: By brute force search, find the site selection that minimizes each of the
above losses with respect to the unobserved distribution of synthetic treatment effects. This
procedure is infeasible in general because treatment effects are not observed, units outside
the population are not observed, and brute force search is computationally infeasible for

larger sample sizes.

6. Aggregate losses across all replications.
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3.1.2 Results

Site Selection Simulation, Auerbach and Thachil (2018)
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Table 1: Simulation Results, Auerbach and Thachil (2018)

SPS Best Subsets Ensemble
PATE (In-sample) 0.01576215 0.01508495
PATE (Out-of-Sample)  0.02469087 0.02217600
CATE (In-sample) 0.01573571 0.01396278
CATE (Out-of-Sample)  0.02332683 0.02228081
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Our proposed method has better average performance when estimating the PATE and the CATE; and

in both in-sample and out-of-sample contexts, compared to Synthetic Purposive Sampling.

3.2 TIHDP: Hill, 2011

Our second study uses data from the Infant Health and Development Program (IHDP), which has become
a benchmark dataset for assessing the performance of models that estimate heterogeneous treatment effects

(Brooks-Gunn et al., 1992; Hill, 2011).

Site Selection Simulation, Auerbach and Thachil (2018)

CATE (In-Sample Error) CATE (Out-Of-Sample Error)
[Te)
o
[=)
g & 3 3
c o c
& &
g g 3
[=) N
g g
2 © S N
(] (o] -
= 8 = © \
=) N
\
S o | ‘\
o T T T T T T T T e T T T T T T T T
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
No. of Sites No. of Sites
PATE (In-Sample Error) PATE (Out-Of-Sample Error)
[Te)
N
S o
oM 4
o [=)
('\! —
g o 3 .
3 3
Z 2 5 g |
a o Q o
c <
L2 o i) —
o = o
B L
= 8 — = e —__—"__ \\\
o ~ oo ____ P \
N
o o AN
S S
© T T T T T T T T © T T T T T T T T
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9
No. of Sites No. of Sites
— SPS - -- Oracle —— Best Subsets Ensemble

20



Table 2: Error (Wasserstein Distance), Hill (2011)

SPS Best Subsets Ensemble
PATE (In—sample) 0.1325840 0.1131592
PATE (Out-of-Sample)  0.2268514 0.2065952
CATE (In—sample) 0.1278788 0.1150756
CATE (Out—of—Sample) 0.2441207 0.2355789

3.3 Twins: Louizos, 2017

CATE error, Twins dataset, Louizos (2017)

o
I
o
Q
o
T}
-
o
Q
o
)
(8]
c
<
8
N
o
a -
£ o
L ©
n O
.
1)
()]
7]
2
T}
o
oS
Q
o
o B e e ee--- .
Q -t T T T, S-ao
o
Q
o I I I I I I I I

Number of Sites

Figure 3: Twins simulation. Blue: SPS, Red: Best Subsets, Black: Oracle



Table 3: Test error (Wasserstein distance) on Twins dataset, Louizos (2017)

4 Extensions

4.1 Pilot Data

4.2 Welfare Weights

5 Conclusions

We propose a novel method for selecting experimental sites based on observable covariate data using an

ensemble learner based on Best Subsets.

empirical contexts.

SPS

BestSubsetsEnsemble

R N R R
@m\lcllﬁcﬂﬂkww

0.0016831510
0.0014473130
0.0014986730
0.0002831783
0.0013974690
0.0023271380
0.0005380903
0.0003607147

0.0001232097
0.0006458922
0.0002082345
0.0001110586
0.0003896494
0.0012880440
0.0004933354
0.0001697653

=
®
)
S

0.0011001370

0.0004286486
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6 Appendix

A.1 Best Subsets and Mixed Integer Optimization
A.2 Proofs of Theorems

A.3 Additional Simulation Results

29



	Introduction
	Literature Review

	Method: A Best Subsets Ensemble for Site Selection
	Problem of Site Selection
	Using Covariates As Proxies for Potential Outcomes
	Best Subsets: A Brief Overview
	Using Best Subsets to Select Sites
	Site Selection for the PATE
	Site Selection for the CATE

	An Ensemble Method: Subsampling with Weighted Majority Voting
	Loss functions

	Algorithms

	Empirical applications
	Settlements: Auerbach and Thachil, 2018
	Simulation approach
	Results

	IHDP: Hill, 2011
	Twins: Louizos, 2017

	Extensions
	Pilot Data
	Welfare Weights

	Conclusions
	Appendix

