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Abstract

Scholars frequently use covariate balance tests to test the validity of natural experiments and related
designs. Unfortunately, when measured covariates are unrelated to potential outcomes, balance is
uninformative about key identification conditions. We show that balance tests can then lead to erroneous
conclusions. To build stronger tests, researchers should identify covariates that are jointly predictive of
potential outcomes; formally measure and report covariate prognosis; and prioritize the most individually
informative variables in tests. Building on prior research on “prognostic scores,” we develop bootstrap
balance tests that upweight covariates associated with the outcome. We adapt this approach for regression-
discontinuity designs and use simulations to compare weighting methods based on linear regression and
more flexible methods, including machine learning. The results show how prognosis weighting can avoid
both false negatives and false positives. To illustrate key points, we study empirical examples from a
sample of published studies, including an important debate over close elections.

1 Introduction

Methodologists urge researchers to test observable implications of assumptions that aid causal inference.
In natural experiments and related designs, researchers often report covariate balance tests. The logic
appears straightforward: if a coin flip had determined treatment assignment, pre-treatment covariates or
“placebo outcomes” would have the same distribution, in expectation, in treatment and control groups
(Eggers et al. 2023, Caughey et al. 2017). A statistically insignificant association between treatment and
covariates is consistent with random assignment—an important advantage, if true, for making inferences
about causation—while a significant association may suggest a flaw in the design.

Unfortunately, these widely used tests may shed no light on key identification conditions. Researchers
testing the validity of an alleged natural experiment would like to know whether a treatment is assigned
independently of potential outcomes—a condition sometimes called ”as-if” random.1 In many studies, however,
none of the measured covariates used in the balance tests are prognostic, that is, associated with potential
outcomes. In others, some covariates are prognostic but others are not. As we show in this article, balance
tests based on irrelevant covariates unrelated to potential outcomes cannot tell us whether as-if random
is plausibly met. A similar point applies to regression-discontinuity designs, in which analysts often seek
to test the continuity of potential outcomes at a threshold determining treatment assignment, rather than
as-if random. The continuity of non-prognostic covariates is uninformative about the continuity of potential
outcomes themselves.

Using a sample of experiments, natural experiments, and regression-discontinuity designs published in
top political science journals, we demonstrate three features—and, we argue, problems—of existing balance
tests. (1) Covariate prognosis is rarely or never measured. (2) The overall prognosis of the covariates used in
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balance tests varies across studies—and is often very weak. (3) Within studies, the prognosis of individual
covariates also varies and is also often weak.

These problems undermine the ability of standard balance tests to assess identification conditions. In
typical practice, researchers report lengthy covariate balance tables without considering which variables are
actually predictive of outcomes. However, sometimes imbalances occur on irrelevant covariates unrelated to
potential outcomes. Other times, it is the prognostic covariates that are imbalanced. Because prognosis is
not measured or incorporated formally into tests, the varied informativeness of different covariates is not
considered, and it is difficult to assess how meaningful are rejections for any individual covariate. Moreover,
because researchers often present tests for different covariates separately, standard procedures also lead
to multiple testing problems as well as indeterminacy: there is no clear rule for rejecting an overall null
hypothesis like as-if random. Finally, because researchers do not assess the joint prognosis of covariates,
readers and reviewers cannot readily assess the overall power of the tests to falsify identification conditions.

We make several contributions in this article to addressing these common problems. First, we show why
covariate prognosis is important for balance tests. We demonstrate that tests using irrelevant, non-prognostic
covariates can lead researchers falsely to reject as-if random when it is true or to fail to reject when it is false.

Second, we show that researchers can increase the power and specificity of their tests by measuring the
most jointly prognostic covariates possible—and then prioritizing the most informative covariates, among
those they measure. Thus, we offer the following concrete advice for how researchers using balance tests can
address problems (1)-(3) highlighted above:

(1) Measure and report prognosis in balance tests. We propose measures of covariate prognosis that
help researchers and readers assess the informativeness of balance tests. Although potential outcomes
are partially unobservable (Holland 1986), it is possible to assess, for instance, how well covariates
predict potential outcomes under control using data from a control group sample. Such diagnostic
measures are essential because prognosis is an empirical question. For example, while the pre-treatment
values of outcome variables tend to be related to potential outcomes under control (Imbens and Rubin
2015: 483-4), such lagged outcomes may or may not be available to researchers; and, as we show, in
some applications they are not in fact prognostic.

(2) Maximize overall covariate informativeness. Our results show that as the set of covariates used in
balance tests become more prognostic, the tests become more powerful and specific. Thus, researchers
should endeavor to collect data on the most jointly prognostic covariates possible. Theoretical and
substantive knowledge can guide the identification of covariates that are likely associated with potential
outcomes in a given context. Where feasible, researchers should include the lagged dependent variable
as a covariate. Formalizing the reporting of measures of prognosis as part of the publication process,
per (1), can aid assessment of informativeness and heighten researchers’ incentives to gather data on
the most predictive covariates possible.

(3) Prioritize prognostic variables in the tests. Finally, we utilize balance tests that prioritize—among
a set of measured covariates—the individual variables most associated with potential outcomes. These
tests upweight prognostic and downweight non-prognostic covariates to form a single informativeness-
weighted test statistic. By combining information on prognosis across covariates into one omnibus test
statistic, these tests confront problems of indeterminacy in covariate-by-covariate tests and can increase
power and specificity.

For (3), we build on research in statistics and epidemiology on the use of ”prognostic scores” to estimate
treatment effects in observational studies (especially Hansen 2008; also Rubin and Thomas 2000, Stuart et al.
2013, Leacy and Stuart 2014, and Wainstein 2022). These methods have been very little used in the social
sciences: only a handful of citations appear in social science journals, and prognostic scores are nearly absent
from applied work in political science.

We extend this previous work to construct covariate balance tests appropriate for different identification
conditions. The key test statistic is the difference in the average fitted, covariate-adjusted potential outcome
under control across treatment and control groups, as in Hansen (2008) and Stuart et al. (2013). Thus, the
researcher fits a predictive model for outcomes in the control group and obtains predictions for potential
outcomes for units in the treatment group.
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The test statistic thereby upweights informative covariates associated with the outcome and downweights
irrelevant covariates unrelated to the outcome. In our baseline test of as-if random, the coefficients from
a linear regression of control group outcomes on covariates are used as weights. The test combines the
inputs of standard balance tables—differences of covariate means in the treatment and control groups—into a
single prognosis-weighted statistic with one associated p-value. This omnibus approach thus also addresses
indeterminacy and multiple testing problems.

We further adapt prognosis weighting for covariate balance tests in three ways. First, we extend the fitted
value approach to flexible and nonlinear machine learning methods, which to our knowledge existing work on
prognostic scores has not done. We use simulations to assess how prognosis weighting can improve power and
specificity, relative to standard unweighted tests, and we compare the different forms of prognosis weighting.

Second, we adapt prognosis weighting for regression-discontinuity designs. To test the continuity of
average potential outcomes at the threshold determining treatment assignment, researchers may compare
differences of prognosis-weighted intercepts above and below the threshold. As with tests of as-if random,
this approach prioritizes the most informative covariates and bases assessment on a single prognosis-weighted
statistic.

Third, for hypothesis testing, we provide a bootstrap that accounts for the statistical dependence of
covariate control group means and the estimated prognosis weights. We also discuss how to leverage
equivalence testing with prognosis weighting. All statistical routines are implemented in our forthcoming R
package pwtest.2

Our results show that prognosis-weighted tests can achieve substantial gains in power as well as specificity,
relative to standard unweighted tests. The key advantage is that downweighting irrelevant noise variables
unrelated to potential outcomes can limit both false positives and false negatives—because conclusions are
then based on the most informative covariates.

Finally, we discuss many empirical examples of problems (1)-(3) in applied research and discuss possible
solutions. Both the extent of imbalance and, especially, the degree of covariate prognosis vary across the
studies in our sample. We report p-values for prognosis-weighted tests of as-if random and continuity and
show graphically how our prognosis-weighted tests project out irrelevant covariates. This helps demonstrate
how prognosis weighting can address the problems we highlight.

The examples show that by properly prioritizing informative covariates, prognostic-weighted tests base
conclusions on the variables most predictive of outcomes. In one set of studies, the relatively predictive
individual covariates are imbalanced (e.g. Samii 2013, Blattman 2009, or Thomas 2018); here, prognosis
weighting can lead rejections of as-if random, whereas unweighted tests do not. In a second set (e.g. Novaes
2018, Kim 2019, and Boas and Hidalgo 2011), there is imbalance only on irrelevant noise covariates, so
adjusting for prognosis may increase our confidence in the validity of the natural experiment. In a final set of
studies (e.g.,Fouirnaies and Hall 2014), there is a mix of observed balances and imbalances on prognostic
and non-prognostic variables, and prognosis weighting helps sort out the relative importance of the different
covariates.

We also use as a case study the randomness of close elections, an important topic of recent debate
(Caughey and Sekhon 2011, Eggers et al. 2015, De la Cuesta and Imai 2016, Hartman 2021). Existing
tests of balance in close elections exhibit the general problems (1)-(3) we identify. Using data from the U.S.
House, we illustrate how prognosis-weighted tests synthesize and extend contrasting previous results. Most
importantly, we show that covariate prognosis in cross-national tests of the randomness of close elections
is very weak: for example, lagged party incumbency has on average no predictive value for incumbency
outcomes in cross-national data. Balance tests using this single covariate, as in Eggers et al. (2015), therefore
have little power to falsify as-if random or continuity. In particular, they are prone to false negatives.

We focus our discussion of empirical examples substantially on natural experiments and discontinuities, in
which analysts usually have outcome data available at the time they conduct balance tests. However, the
techniques extend naturally to randomized experiments with attrition, imperfect implementation, or other
issues that may be detectable with tests based on covariate imbalance.

Methodologically, by incorporating prognosis-weighting into omnibus tests of identification conditions, we
contribute to previous research on covariate balance testing. Imai et al. (2008) emphasize the problem that
failing to reject a null hypothesis is not the same as accepting it: researchers may fail to reject simply because

2Package pwtest can be found on https://github.com/[ANONYMIZED]/pwtest. Installation instructions and syntax are in
Online Appendix Section 9).
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their study is small and underpowered. Our work adds a further dimension to this “balance test fallacy,”
because we show that even a large, apparently well-powered test will not validly test key identification
conditions if covariates are not prognostic. In addition, by basing our tests on a single summary test
statistic, we provide a new way to address multiple testing concerns (De la Cuesta and Imai 2016) and
complement valuable articles on omnibus covariate balance tests (Hansen and Bowers 2008; Caughey et al.
2017; Gagnon-Bartsch and Shem-Tov 2019), which do not however consider covariate prognosis.3

Our most important contribution, however, is practical. Social science researchers deploying balance tests
in natural experiments and related designs do not currently measure or account for the informativeness of
covariates. We show how (1) measuring and (2) maximizing joint prognosis, then (3) prioritizing informative
covariates that are predictive of outcomes while de-prioritizing irrelevant ones, can improve the usefulness
of covariate balance tests. Prognosis-weighted tests offer an improvement on current practice in applied
research—which ignores the issue of prognosis entirely—and can lead to more credible conclusions about
whether identifying conditions are met.

In the next section, we use our sample of papers from top political science journals to illustrate the three key
problems we highlight. We then discuss in section 3 why prognosis matters for testing identification conditions.
In section 4, we describe bootstrap prognosis-weighted tests of as-if random and adapt the approach to test
continuity of potential outcomes in regression-discontinuity designs. We also discuss simulation evidence on
the tests’ power and specificity. In section 5, we turn to practical issues, discussing many examples that
show the gains from prognosis weighting and developing the case study of close elections. Our conclusions in
section 6 expand on our recommendations for practice. Technical details and formal arguments are in section
7 and the Online Appendix.

2 The problem of weak covariate prognosis: a survey of reported
balance tests

To motivate our focus, we study a random sample of 150 articles that use randomized experiments, natural
experiments, and RD designs and that were published in three top political science journals (the APSR, the
AJPS, and the JOP), stratifying by journal, over the time period 2000-2019.4 Overall, 52 percent of articles
present balance tests.

The survey suggests three features—and, we will argue, problems—of standard balance tests.

2.1 Prognosis is rarely measured

Covariate prognosis is rarely considered systematically. In fact, we found no examples of efforts to measure
the prognosis of the covariates used in balance tests.

This is a critical omission because different covariates vary in their ability to predict potential outcomes.
As we discuss next, (a) the set of covariates used in a given study may or may not be jointly prognostic; and
(b) within a given study, different individual covariates may have different degrees of association with the
outcome variable.

Moreover, it is not obvious a priori whether a given set of covariates is prognostic. For example,
methodologists sometimes recommend using the pre-treatment value of the dependent variable as a covariate
(Imbens and Rubin 2015: 483-4, Eggers et al. 2023, Caughey et al. 2017). This may be because it can be
highly prognostic of potential outcomes under control. Yet this also might not hold, for example, due to
heterogenous temporal trends or other factors. In our case study of close-election designs later, we show that
lagged party incumbency has almost no predictive value for incumbency outcomes in a cross-national data
set. Prognosis is thus an empirical question, and it requires formal diagnosis.

Reporting measures of the association between covariates and outcomes can give readers an indicator of
the informativeness of balance tests. As we will show, prognosis powerfully affects the ability to use covariate

3Related research in statistics and epidemiology recommends upweighting tests for “important” hypotheses—those most
plausibly false—in p-value combinations; see e.g. Fisher (1935), Holm (1979), Benjamini and Hochberg (1997), Kost and
McDermott (2002), Westfall (2014), and Genovese et al. (2006). Our approach gives specific content to which hypotheses are
most likely to be false in balance tests by upweighting covariates related to potential outcomes.

4For code used in the sampling, see OMITTED.
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balance to test key identification conditions meaningfully (sections 3 and 4). However, such measures are
essentially never reported in applied work.

2.2 Joint covariate prognosis varies across studies—and is often weak

The joint prognosis of covariates used in balance tests in fact varies substantially across different studies—and
is often quite low.

The horizontal axis of Figure 1 plots the R2 from the multiple regression of control group outcomes
on all available covariates, for a sub-sample of the studies (“Prognosis R2”).5 As we discuss later, such
goodness-of-fit measures provide one helpful tool for assessing prognosis. The vertical axis plots the multiple
R2 from the regression of a treatment assignment indicator on all available covariates (“Imbalance R2”).

Figure 1 suggests several insights. First, we find relatively little covariate imbalance in these studies
overall. Most cluster along the bottom portion of the plot, with a low Imbalance R2 (less than 0.1). This
likely reflects our sampling strategy: studies with substantial covariate imbalance are unlikely to be published
as natural experiments or discontinuity designs. Sampling a fuller range of observational studies would
presumably populate the top part of the figure.

Second and more concerningly, however, covariates are not predictive of potential outcomes in many
studies. Some studies located towards the right of the horizontal axis use covariates associated with potential
outcomes. Yet, many studies cluster close to the vertical axis—where the prognosis R2 is zero. We note
that in the full sample of 150 studies, only 18 percent of balance tests used the pre-treatment value of the
dependent variable as a covariate.

Thus, many balance tests use noise covariates that are only weakly related to potential outcomes. This
includes several studies with good observed balance. Arguments we will develop in section 3 and 4 suggest
that heuristically, there are four kinds of cases in Figure 1:

1. In the lower-left quadrant, we risk a form of Type I error: we may fail to reject as-if random due to
the observed balance of noise covariates unrelated to outcomes. Yet potential outcomes are themselves
related to treatment assignment.

2. In the upper-left quadrant, we may instead be prone to spurious rejection of as-if random—because
there is imbalance on covariates unrelated to potential outcomes.

3. In the lower-right quadrant, we find cases with high prognosis but low imbalance: here, the claim of
as-if random may be most persuasive.

4. Finally, in the upper-right quadrant, rejection may be most persuasive of a failure of as-if random—
because imbalanced covariates are as a whole prognostic of potential outcomes.

For 3 and 4, however, we note that covariates may be associated with potential outcomes as a whole, leading
to a high prognosis R2; yet balance or imbalance could occur on a non-prognostic subset of covariates.

This implies that tests should be based on the most individually prognostic covariates in the set, as in the
prognosis-weighted procedures we present in section 4.

2.3 Individual covariate prognosis varies within studies—and is also often weak

Finally, within studies, different covariates also vary in their informativeness about outcomes.
In Figure 2, we plot (a) the standardized difference of means across treatment and control groups for

each covariate in each study in Figure 1 (vertical axis) against (b) that covariate’s individual prognosis,
i.e., the standardized regression coefficient from the prognosis regression (horizontal axis). The black dots
indicate differences of means that are statistically significant in a t-test, while gray dots indicate insignificant
differences.6

5We omitted randomized experiments and stratified on natural experiment versus discontinuity and on the presence of a
lagged dependent variable. We excluded some studies due to lack of replication data (Online Appendix Section 6.1).

6For consistency, we use the same test for each study. The effective sample size can differ across variables due to covariate-
specific missing data. See details in Online Appendix Section 1.
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Figure 1: Imbalance vs. Prognosis In Balance Testing (Sample of Natural Experiments and RD Designs)

The figure plots a sample of natural experiments and regression-discontinuity (RD) designs drawn from all
those published in the American Political Science Review, American Journal of Political Science, and
Journal of Politics, 2000-2019; Caughey and Sekhon (2011) is added. Prognosis R2 comes from a regression
of potential outcomes under control on all available covariates (control group only). Imbalance R2 comes
from a regression of treatment assignment on all available covariates. Two studies we discuss in detail in
Section 5 are bolded. See Online Appendix Section 1 for further information.
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As Figure 2 shows, some individual covariates are strongly predictive of potential outcomes—while for
many others, the prognosis coefficient is near zero. Furthermore, as with joint prognosis (Figure 1), the
relationship between individual prognosis and the treatment-control imbalances varies. In some studies,
irrelevant covariates unrelated to potential outcomes are imbalanced; other times, it is the prognostic covariates
that are significantly imbalanced.

Unfortunately, as with joint prognosis, we find no formal measurement in these studies of which particular
covariates are actually predictive of outcomes. Absent a plot like Figure 2 or other measures of the prognosis
of individual covariates, it is difficult to know which ones are informative.

This situation appears typical in the literature. Researchers often present tests for numerous individual
covariates: the majority of the studies in our sample that present balance tests (56 percent) report only
covariate-by-covariate tests. Such tests can result, however, in indeterminacy (Kost and McDermott 2002) as
well as problems of multiple statistical comparisons (Benjamini and Hochberg 1995, De la Cuesta and Imai
2016). Rules of thumb—such as that only 1 out of 20 differences should be significant at the 0.05 level when
treatment is randomized—do not apply when covariates are correlated and thus tests are dependent, as they
almost always are in practice (Caughey et al. 2017). Results of disparate covariate-by-covariate tests fail to
lead to a clear decisions rule for rejecting an overall null hypothesis like as-if random.

Most worrisome, different covariates differ in their informativeness about potential outcomes—yet because
prognosis is undiagnosed, it is difficult to know which of the separate covariate-by-covariate tests should be
treated as most dispositive. This variation in individual informativeness affects interpretation of test results,
as we will show. Even studies that assess the joint imbalance of all covariates using omnibus or global test
statistics—for example, by reporting the p-value of the F -statistic from the (unweighted) regression of a
treatment indicator on all covariates—do not account for the varied informativeness of individual covariates.7

All covariates are thus treated equally in balance tests—but in truth, some are more informative than others.

2.4 Summary of survey: limitations of standard balance tests

Our survey shows that covariate prognosis varies both within and across published balance tests. Yet, in
none of the studies we examined is prognosis measured. Nor is it incorporated formally into tests.

What are the implications for our conclusions about identification conditions? How should we think about
tests with low imbalance but also low prognosis, as in the bottom-left quadrant of Figure 1? What inferences
can we draw from those located in the figure’s other quadrants? And how should we adapt covariate balance
tests to account for the unequal informativeness of different covariates?

We develop theory and simulations to address these questions in sections 3 and 4, then we return to
further discussion of empirical examples in section 5.

7By “omnibus” and ”global,” we mean a test statistic based on some combination of the covariates that returns a single
p-value, rather than different p-values for different covariates (Caughey et al. (2017)). See Hansen and Bowers (2008) on
drawbacks of the F -test.
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Figure 2: The prognosis and imbalance of individual covariates varies

For each of our sampled studies in Figure 1, we plot for each covariate the standardized difference of means
across treatment and control (vertical axis) against the covariate’s standardized multiple regression
coefficient, from the prognosis regression (horizontal axis). The red triangles indicate the overall prognosis
and imbalance R2s. We indicate in black the covariates where the p-value ≤ 0.05 from a two-tailed t-test of
covariate values across treatment and control, suggesting covariate imbalance. In discontinuity designs, we
use the authors’ chosen bandwidths to define the study group for the tests (see Online Appendix Section
1.1.1 for details).
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3 Are potential outcomes balanced? Why prognosis matters

Researchers using experiments, natural experiments, and discontinuity designs often wish to test key identifi-
cation conditions.

In valid natural experiments, the following condition must hold:

Assumption 1 (As-if Random Assignment) Treatment is assigned independently of potential outcomes.

As-if random ensures, for example, that sicker patients do not go systematically to the treatment group in a
drug trial studying health outcomes, or that those more prone to vote do not disproportionately receive a
vote-mobilizing intervention.8 If as-if random holds, the true ATE is estimable using simple, transparent
methods (Freedman 1999).

This assumption can be the “Achilles Heel” of natural experiments, however (Dunning 2008). In a true
randomized experiment, a chance protocol under the control of a researcher (Fisher 1935) ensures that
treatment is independent of potential outcomes, as well as any fixed covariates—though even in experiments,
issues like attrition or failed implementation can compromise as-if random. In natural experiments, by
contrast, as-if random is held to be an implication of a process, not under the control of the researcher, that
is alleged to produce a haphazard allocation that does not depend on potential outcomes.

Unfortunately, Assumption 1 cannot be directly verified due to the “fundamental problem of causal
inference” (Holland 1986): we do observe treatment potential outcomes for those assigned to the control
group, and vice versa. We thus cannot use the realized distribution of potential outcomes to test as-if random.

3.1 What standard balance tests do

Researchers therefore seek to test Assumption 1 using information about the realized distribution of observed
covariates across treatment and control groups. The difficulty is that these covariates may or may not be
related to potential outcomes—and thus standard balance tests therefore may or may not effectively test as-if
random.

Suppose that the space of possible covariates contains ”signal” covariates, which contain all information
about potential outcomes, and “noise” covariates, which contain none (compare Liu and Ruan 2020).
Signal covariates and potential outcomes are dependent, while noise covariates are independent of potential
outcomes.9

The logic of standard balance tests appears to rest on the following claim:

Claim 1 Treatment assignment is independent of covariates if and only if treatment assignment is
independent of potential outcomes.

Thus, a failed balance test suggests a failure of as-if random, and vice versa.

The claim is false, however. As we show formally in Online Appendix Section 2, two kinds of counterex-
amples are relevant:

Counterexample to Claim 1: False positives. Suppose treatment is assigned independently of potential
outcomes, so as-if random holds. However, observed covariates are merely noise, and Nature has adversarially
chosen to assign treatment so that it depends on the noise covariates. Then treatment assignment depends
on covariates—even though treatment is assigned independently of potential outcomes. The “if” direction of
the claim thus does not follow.

For example, in an observational study of the efficacy of a new drug, men might tend to select into the
treatment group. Yet gender may be unrelated to health status or responsiveness to the treatment. If we
have only data on gender, we may wrongly reject as-if random based on the covariate imbalance, even though
potential outcomes themselves may be independent of treatment.

A researcher who believed Claim 1 might thus perform a balance test, observe imbalance between treatment
and control groups on some subset of covariates, and conclude that treatment was not randomly assigned.

8Assumption 1 is also sometimes called (strong) ignorability.
9See Online Appendix Section 2 for a formal treatment.
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However, this is a false positive if the imbalanced covariates are unrelated to potential outcomes: their
imbalance does not constitute evidence that as-if random fails.

Conversely—and perhaps most importantly, as we might worry most about false claims to a natural
experiment—balance on a spurious covariate does not imply that treatment is assigned independently of
potential outcomes, as the next counterexample shows.

Counterexample to Claim 1: False negatives. Assume now that as-if random fails but treatment is
assigned independently of the noise covariates. Independence of observed noise covariates and treatment does
not therefore imply that treatment is assigned independently of potential outcomes. The “only if” direction
of Claim 1 does not follow.

For instance, sicker patients might select into the treatment group. As-if random may thus fail. Health
after an intervention may be closely related to prior health—yet we may fail to measure this signal covariate.
In contrast, men may be as likely to select into treatment as women, leading to expected balance on gender.
Yet, if gender is not related to potential outcomes or responsiveness to treatment, its observed balance cannot
readily validate as-if random. If we base a balance test on gender, we may thus falsely fail to reject as-if
random.

In sum, covariates differ in their informativeness about potential outcomes. If we only measure noise
covariates—those unrelated to potential outcomes—then finding balance or imbalance on those covariates
does not allow us to test as-if random assignment.

3.2 The power of prognosis

The discussion thus far suggests we should consider the informativeness of covariates when constructing
balance tests.

There are at least two reasons that prognosis of covariates matters for testing—and also thus why covariates
with differing degrees of prognosis should not be “treated equal.”

First, as mentioned, the most direct test of as-if random would assess balance of potential outcomes
across the treatment and control groups (Imbens and Rubin 2015, Chapter 21). This test is impossible: once
treatment has occurred, we do not observe potential outcomes under control in a treatment group or potential
outcomes under treatment in a control group (Holland 1986).

Yet, a covariate strongly associated with potential outcomes may give us substantial information about
this realized balance. Indeed, as we discuss next, if the covariates at our disposal happened to contain all
information about subjects’ potential outcomes, then we could use the observed balance of covariates to
validly test the independence of treatment assignment and potential outcomes.

Second and relatedly, if subjects self-select into treatment groups, as in many observational studies, then
(contra as-if random) the intervention they receive may depend on the outcomes they would experience in each
group (Heckman 1979, Angrist and Pischke 2009). Agents may have unobserved prognostic information that
researchers lack, e.g. about their expected gains from treatment that may lead them select into treatment.
The informativeness of balance tests can therefore be especially limited if covariates are not predictive of
potential outcomes.

In contrast, as we argue next, measuring and prioritizing prognostic covariates in tests is most likely to
detect such selection into treatment on the basis of potential outcomes.

3.2.1 A conceptual motivation: minimally sufficient covariates

As a conceptual motivation for this argument, suppose first that observed covariates that are ”minimally
sufficient”—essentially, that contain all and only the possibly observable information about potential outcomes
(Dawid 1979, Pearl 1988, VanderWeele and Shpitser 2011, 2013, Wang and Wang 2020). In this case, as
we show in the appendix, treatment assignment depends on the covariates if and only if they depend on
potential outcomes (Online Appendix Section 3.1, Theorem A.1). Then, we may validly reject as-if random
based on the non-independence of treatment assignment and covariates—as in standard balance tests.

This idea is useful because it underscores the importance of choosing jointly informative covariates—and
then prioritizing the most informative subset for tests. Sufficiency only guarantees the ”if” direction of the
theorem. Thus, it controls false negatives: if covariates are sufficient, then when treatment is not assigned
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independently of potential outcomes, we should expect a well-powered balance test to fail. For the ”only
if” direction, we need minimum sufficiency—i.e., the and only part of its definition. This controls false
positives: if covariates are minimally sufficient, a failed balance test implies a failure of as-if random. This is
a key motivation for the prognosis-weighted tests we discuss in Section 4. By projecting potential outcomes
onto covariates before running tests, we effectively discard uninformative covariates—as in the creation of a
minimally sufficient from a merely sufficient covariate set.

In applications, unfortunately, covariates usually cannot be expected to contain such complete information
about the values of potential outcomes. Moreover, sufficiency is difficult or impossible to validate. To be
sure, a version of this condition could occur in some settings. For example, the pre-treatment value of the
response variable may sometimes equal the post-treatment value in the absence of an intervention. Then
this covariate’s correlation with potential outcomes under control is 1, which also implies sufficiency. Yet,
even with a lagged dependent variable, temporal trends could imply differences in values of the outcome
variable in the pre- and post-treatment periods, absent an intervention. These trends could be heterogeneous
for different units, which implies a correlation less than 1. The direct practical implications of the minimal
sufficiency theorem are thus limited.

3.2.2 The importance of prognosis

The more prognostic covariates are, however, the closer they may get to approximating the ideal situation of
complete informativeness. The logic suggests that the power and specificity of tests will improve as covariates
become more predictive of potential outcomes.

In addition, even when a set of measured covariates is not sufficient, we may be able to improve the
performance of tests by prioritizing the individual covariates that are most closely associated with potential
outcomes. We discuss simulation evidence that supports this claim in subsection 4.2.

This argument parallels in some ways standard arguments about the role of prognosis in achieving
control over confounding variables in observational studies (VanderWeele and Shpitser 2011, 2013): the more
predictive of outcomes the measured covariates are, the less likely it is that unobserved factors produce
violations of as-if random. The difference is that here we are focusing on covariate characteristics that allow
us effectively to test as-if random, rather than control for violations of it. Testing and estimation can be
complementary tasks. However, as we suggested in section 3.1, with balance testing we should be attentive to
both false negatives and false positives: we may fail to reject as-if random because spurious covariates are
balanced, but we may also falsely reject it because irrelevant covariates are imbalanced.

The challenge is therefore to collect covariate data that allow us to test identification conditions convincingly.
Unfortunately, the predictiveness of covariates for outcomes has been ignored in applications of balance
testing in experiments, natural experiments, and discontinuity designs. As we emphasized in Section 2,
researchers do not typically report measures of covariate prognosis, nor do they discuss efforts to maximize
the informativeness of covariates used in balance tests. Thus, it is usually difficult to assess the extent to
which these pathologies of standard balance tests apply.

In sum, we argue that researchers should attempt to gather the most informative set of covariates
possible, and then prioritize the most prognostic ones in their tests. The more prognostic are covariates,
the more information they give us about the likely balance of potential outcomes, and the more useful are
covariate balance tests. Measures such as the prognosis R2 (Figures 1-2) can be viewed as a continuous
operationalization of informativeness. Such measures can help researchers assess the adequacy of information
about potential outcomes contained in a set of measured covariates. We return to this point in connection
with our simulations (section 4.2), where we assess how error rates in tests vary as a function of levels of
prognosis observed in the empirical studies in Figures 1 and 2.

4 Prognosis-weighted covariate balance tests

Suppose researchers successfully gather data on jointly prognostic covariates, as recommended in the previous
section. How should they combine the information from different covariates to test key identification
conditions?

Prognosis-weighted tests provide a useful approach that prioritizes the covariates that are most informative
about potential outcomes. Hansen (2008) proposed balancing on “prognostic scores” in observational studies,
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and some subsequent literature has explored the performance of prognostic-score balancing empirically (see
especially Stuart et al. 2013).

In the technical appendix (section 7) and online supplementary materials, we extend these methods
to develop covariate balance tests appropriate for assessing different identification conditions. The key
test statistic is the difference in the average covariate-adjusted potential outcome under control—that is, a
difference of fitted values—across the treatment and control groups.

In a baseline test of as-if random based on linear regression, this statistic is equivalent to a weighted
combination of differences of covariate means, where the weights are coefficients from the prognosis regression—
i.e., the multivariate regression of outcomes on covariates in the control group (equation 5 in section 7). Thus,
the test takes the standard inputs of covariate balance tests—covariate differences of means across treatment
and control—and combines them into a single test statistic.

This approach therefore downweights irrelevant covariates and prioritizes informative variables. The goal
can also be viewed as constructing a test set as close to minimally sufficient as possible, via a projection of
potential outcomes onto covariates before running tests.

This upweighting of covariates related to outcomes has important consequences for our ability to test
identification conditions. In work on prognostic scores, researchers have explored the consequences of omitting
prognostic covariates for bias in the estimation of treatment effects (e.g., Stuart et al. 2013)—but not, it
appears, the consequences of including irrelevant covariates. In the context of covariate balance tests, however,
downweighting noise covariates unrelated to potential outcomes can avoid both false positives—rejecting as-if
random when it is true—and false negatives—failing to reject as-if random when it is false (see subsection
4.2).

4.1 Extensions

We propose three types of extensions of this basic approach, which are discussed in more detail in section 7
and the Online Appendix.

4.1.1 Prognosis weighting based on flexible regressions and non-linear methods

First, we explore a range of prognosis-weighted tests based on flexible regressions and nonlinear methods,
including machine-learning techniques.

The fitted-value approach leads naturally to these extensions, since different methods can be used to
fit covariate-adjusted potential outcomes in the control group and then extrapolate predicted values to
the treatment group. The motivation is that by allowing better prediction of potential outcomes—when,
for instance, outcomes are nonlinearly related to covariates—flexible methods may improve the power or
specificity of tests.

However, the performance of tests based on machine learning and other flexible methods appears not
to have been assessed in the literature on prognostic scores (as noted by Stuart et al. 2013 and Leacy and
Stuart 2014). We therefore use simulations to compare the test performance of these different methods (see
subsection 4.2). We implement these methods—including linear regression with expanded polynomial bases
and covariate interactions, regularization with lasso, and machine learning methods including random forests
and gradient boosted trees—as options in our R software (see subsection 7.3).

4.1.2 Prognosis-weighted tests of continuity in regression-discontinuity designs

Second, we extend the fitted value approach to allow for prognosis-weighted tests of continuity in regression-
discontinuity (RD) designs.

Here, rather than a prognosis-weighted difference of means as in the test of as-if random, the test statistic
is a prognosis-weighted difference of intercepts from regressions above and below the threshold determining
treatment assignment.

Conceptually, it is as if we ran separate regressions of each covariate on the running variable in the RD
design above and below the assignment threshold, as in standard covariate-by-covariate tests—but then
combined the intercepts from the separate regressions using prognosis weighting.
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As with tests of as-if random, the prognosis-weighted difference of intercepts allows a test of continuity
based on the covariates that are most informative about potential outcomes (see subsection 7.4 and Online
Appendix Section 5).

4.1.3 Bootstrapped hypothesis tests and equivalence testing

Finally, we develop statistical hypothesis tests appropriate for these varied forms of prognosis weighting. We
discuss a bootstrapping approach that allows naturally for the statistical dependence of the prognosis weights
and control group means and that can be readily adapted for clustered or blocked designs, as well as linear
and flexible non-linear fitting procedures (section 7.2.1).

This bootstrap can be used in connection with the different approaches to fitting covariate-adjusted
potential outcomes, including the flexible regressions and machine learning methods. In addition, researchers
may use either traditional hypothesis testing or prognosis-weighted equivalence tests to assess identification
conditions (section 7.5).

Overall, then, prognosis weighting allows covariate balance tests in which rejections of null hypotheses
stem from differences of covariate distributions across the treatment and control groups—as in standard
approaches—but in which the differences are weighted by measures of prognosis. Since tests may be based
on a single prognosis-weighted test statistic and thus one p-value, the approach also avoids the problems of
indeterminacy and multiple comparisons that beset standard covariate-by-covariate tests.

4.2 Performance of prognosis-weighted tests: evidence from simulations

Under what conditions does prognosis weighting address the problems we raised in sections 2 and 3? The
extent to which prognosis weighting boosts the power and specificity of tests may vary across different
data sets and data-generating processes, especially when covariates are not sufficient. This makes the tests’
performance well-suited for investigation via simulations.

We conducted two types of simulations to assess the performance of prognosis-weighted tests. Due to
space limitations, we present full results in Online Appendix Section 7.

4.2.1 Prognosis-weighted vs. unweighted tests

In one set of simulations, we compare the performance of unweighted to prognosis-weighted tests, while
varying the informativeness of observed covariates about potential outcomes (Online Appendix Sections
7.1-7.4).

Specifically, we compare the prognosis-weighted test using linear regression (subsection 7.2) to two
unweighted tests: (i) the sum of standardized covariate differences of means (call this statistic δUW , see
Online Appendix Section 4.2.1) and (ii) Hotelling’s T 2, another common multivariate test statistic. The
latter differ from covariate-by-covariate tests in that they are based on omnibus statistics but are similar to
standard approaches in that they treat all covariates “equally.”

These simulations allow us to study how joint prognosis affects the power and specificity of covariate
balance tests and how prioritizing informative covariates, through prognosis weighting, affects performance.

Thus, we study rejection rates of the tests when as-if random holds and when it is false, varying covariate
prognosis (Online Appendix Sections 7.1-7.4). When as-if random is false, the rejection rate measures
statistical power of the test; when it is true, the rate measures false positives (or Type I error, inversely
related to specificity). We consider settings in which observed covariates are sufficient and those in which
they are not. In the latter case, we vary prognosis so that covariates are completely uninformative about
potential outcomes or only partially so.

Results: Prognosis-weighted tests avoid both false negatives and false positives

The results illustrate that by projecting out irrelevant covariates, prognosis weighting can reduce both
false negatives and false positives. In contrast, unweighted multivariate tests that do not use information
on covariate prognosis sacrifice power and/or specificity. The extent to which prognosis weighting improves
performance depends on the prognosis of the covariates: as it increases, prognosis-weighted tests become
both more powerful and more specific.
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Three further conclusions from this first set of simulations are important to note. First, when covariates
are sufficient but not minimally so, unweighted tests tend to reject as-if random when it is true or fail to
reject it when it is false, due to the balance or imbalance of spurious covariates (Online Appendix Figure A1
and Table A3). In contrast, prognosis-weighted tests control Type I error at standard levels, failing to reject
as-if random when it is true; yet it also increasingly rejects as-if random when it is false as the prognosis of
imbalanced covariates grows. Thus, compared to unweighted tests, prognosis weighting balances power and
specificity: it better detects true failures of as-if random while simultaneously limiting spurious rejections
(Appendix Figure A2).

Second and by contrast, when covariates are insufficient and fully non-prognostic—that is, composed only
of noise—weighted and unweighted tests alike are prone to substantial error. When the spurious covariates are
balanced in expectation, but as-if random is false, the false negative rate for both kinds of tests approaches 1
(top-left panel of Figure A3).

Third and finally, however, even when covariates are not sufficient, the power of the weighted—but not the
unweighted—tests grows as prognosis increases (right panels of Figure A3 and Table A4). The performance
of the prognosis-weighted tests improves as the joint informativeness of measured covariates grows because it
prioritizes those individual covariates that are most informative.

Thus, the simulations illustrate the usefulness of prognosis weighting but also offer an important caveat,
consistent with discussion in section 3: the quality of balance tests—including prognosis-weighted ones—
depends on the overall joint prognosis of measured covariates. Even when covariates are not jointly sufficient,
however, the prognosis-weighted test achieves power on the order of 70-80% in these simulations when the
prognosis R2 lies between 0.1 and 0.2 (see Figures A3 and A4 and Table A4). Indeed, prognosis-weighted
tests can attain 80% power at low levels of expected imbalance with prognosis R2 as low as 0.125 (Figure
A4). Since these thresholds certainly depend on the data-generating structure, to be conservative, researchers
might require a prognosis R2 of 0.2 to defend their tests as meaningfully prognostic.

The results therefore underscore that diagnosing and reporting covariate prognosis is critical—and so is
incorporating information about the relative prognosis of different covariates into tests.

4.2.2 Varieties of prognosis weighting: linear vs. machine learning methods

In a second set of simulations, we compare different types of prognosis-weighted tests. Here, the prognosis
weights are fit using both linear and flexible non-linear methods, under different degrees and types of covariate
prognosis and imbalance. We modify the data-generating processes so that potential outcomes are nonlinear
functions of the covariates (Online Appendix Section 7.5).

We first consider simulations with polynomials of the covariates in the process for potential outcomes
(Online Appendix subsection 7.5.1). Next, we consider simulations with interaction terms in the outcome
process (Online Appendix subsection 7.5.2). Finally, we evaluate prognosis-weighting tests with two ‘difficult,’
highly nonlinear relationships between covariates and potential outcomes (Online Appendix subsection 7.5.3).
Thus, we use (a) a “tree” specification that creates regime-dependent relationships based on the sign of an
interaction term. This specification allows assessment of the methods’ performance when the functional
form switches discretely based on the interaction term, creating fundamentally different covariate-outcome
relationships across regions of the space. We also assess results using (b) a “sine” specification incorporates
high-frequency nonlinearities. This formulation challenges linear prognosis models with oscillatory components
that standard polynomial approximations may not, a priori, seem to capture well.

In these final simulations, we compare the performance of (1) unweighted tests; (2) prognosis-weighted
tests based on simple linear regressions; (3) prognosis-weighted tests based on regressions with expanded
polynomial bases or interactions; and (4) prognosis-weighted tests based on two machine learning methods,
(i) tuned random forests and (ii) tuned gradient boosted trees, as well as lasso with expanded bases (e.g.
polynomial and covariate interactions). We also assess the performance of the best-fitting method (the one
that produces the best fit to control potential outcomes) that is automatically selected by the software in
each run of the simulations. We manipulate the target R2 of the prognosis regressions to assess how test
performance varies as covariate informativeness changes.

Results: (Saturated) linear models perform well

The results suggest several useful insights and conclusions.
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1. Prognosis-weighted based on ”saturated” linear regressions—i.e., those with expanded polynomial bases
or covariate interactions—can sometimes offer improvements in power over simple linear methods, as
can flexible nonlinear methods (Online Appendix Figures A5 and A7-A10).

2. In many simulations, however, the differences are minor. The extent of the improvement depends not
just on non-linearities in the relationship between covariates and potential outcomes but also on the
nature of imbalances. When “main” terms are balanced in expectation but nonlinear (e.g. polynomial
or interaction) terms are imbalanced, methods that allow nonlinear fits can offer improved power. Yet,
when there is also expected imbalance on main terms, the expected performance of the tests is often
indistinguishable (Online Appendix Figures A7-A10).

3. In these simulations, automatic selection of the method that produces the best fit of potential outcomes
given covariates in the control group need not lead to the most powerful test. Even with the complex,
‘difficult’ data-generating processes, the expanded linear model with polynomial bases and covariate
interactions has the greatest power (Online Appendix Figures A11-A12).

Overall, the best performer is often the test based on the expanded linear model with polynomials and
interactions: it controls Type I error at similar levels as other prognosis-weighted tests when as-if random is
true, but it rejects as-if random with the highest probability when it is false. We therefore recommend simple
tests with weights based on linear regression, particular with expanded bases where possible, due to their i)
estimation stability and sometimes greater power; and ii) the ready interpretability of weights in terms of the
relative prognosis of the different covariates.

Our simulations also draw attention to the importance of patterns of linear versus non-linear prognostic
imbalances, which to our knowledge has not received attention in work on covariate balance testing. Standard
approaches typically test only for main differences (e.g. differences of means), though some do consider
differences in distributions using e.g. K-S tests. Analysts should consider the substantive domain under
consideration and be attentive to the possibility of non-linear imbalances on prognostic variables. We return
to further recommendations in section 6.

5 Prognosis weighting in practice

We now return to the three empirical problems identified in the introduction: in applications, (1) covariate
prognosis is virtually never measured; (2) joint prognosis of covariates varies across studies and is often low;
and (3) prognosis of individual covariates varies within studies and is also often low.

Our theory and simulations discussed in sections 3 and 4 (and the details in section 7 and the Online
Appendix) suggest why these are problems: low-prognosis tests are prone to false negatives and false positives.
Without measuring or accounting for prognosis, it is impossible to assess whether conclusions are based on
signal or noise covariates.

Prognosis weighting, by basing conclusions on the most prognostic variables, can help to mitigate problem
(3) and leads naturally to diagnostic measures that address problem (1). However, the results of balance tests
in studies with low joint covariate prognosis, as in (2), are unreliable.

Table 1 reports prognosis-weighted and unweighted tests of as-if random for the full sample of studies in
Figures 1 and 2. The unweighted tests are based on the statistic defined in subsection 4.2.1 (see also Online
Appendix Section 4.2.1). For studies based on regression discontinuities, we include tests for continuity of
potential outcomes. Studies are ordered by the prognosis R2 in the final column, from highest to lowest. We
fail to reject as-if random (or continuity, for RD studies) using any test in six of these 14 these papers. In
other papers, however, a prognosis-weighted test rejects where an unweighted test does not, or vice versa.

Why do these divergences occur? Inspection of Figure 2 and comparison to Table 1 suggests that when the
weighted test rejects but not the unweighted test, non-prognostic covariates are statistically balanced—but
prognostic covariates are imbalanced.

When the opposite occurs—prognostic covariates are statistically balanced while imbalance occurs on
noise covariates—unweighted tests reject while the prognosis-weighted tests do not.

Finally, a third set of studies in Figure 2 shows a mix of balance and imbalance on prognostic variables.
In this case, prognosis weighting sorts through the mix to allow an overall conclusion.

In sum, the prognosis-weighted tests appropriately prioritize the most informative covariates.
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Table 1: Summary of p-values from prognosis-weighted and unweighted tests for the sample of studies in
Figure 1. For RD studies, we include p-values from tests of continuity of potential outcomes. Studies are
ordered by the value of the prognosis R2, from highest to lowest.

Study Test δUW p-value δPW p-value Prognosis R2

Hall (2015) as-if random 0.166 0.988 0.633
continuity 0.580 0.653

Kim (2019) as-if random 0.000 0.792 0.541
continuity 0.592 0.826

Caughey and Sekhon (2011) as-if random 0.470 0.004 0.487
continuity 0.994 0.812

Novaes (2018) as-if random 0.676 0.676 0.441
continuity 0.644 0.090

Hidalgo and Nichter (2016) as-if random 0.540 0.548 0.366
continuity 0.308 0.323

Samii (2013) as-if random 0.480 0.030 0.244
continuity 0.168 0.298

Blattman (2019) as-if random 0.162 0.042 0.206
Fouirnaies and Hall (2014) as-if random 0.034 0.274 0.200

continuity 0.002 0.658
Thomas (2018) as-if random 0.000 0.016 0.184

continuity 0.000 0.000
Boas and Hidalgo (2011) as-if random 0.122 0.312 0.151

continuity 0.564 0.434
Healy and Malhotra (2013) as-if random 0.216 0.538 0.137
Klasnja (2015) as-if random 0.328 0.000 0.072

continuity 0.860 0.685
Holbein and Hillygus (2016) as-if random 0.310 0.012 0.023

continuity 0.854 0.273
Eggers et al (2015) as-if random 0.464 0.666 0.000

continuity 0.218 1.000

5.1 Three cases where prognosis weighting helps

We now discuss in more detail examples of these three empirical patterns.10

5.1.1 Prognostic imbalance

In one set of studies, we find balance on noise covariates but greater imbalance on prognostic covariates (see
Figure 2, Table 1, and Online Appendix Section 1). In such contexts, an analysis that does not consider
covariate prognosis may support the existence of a natural experiment or valid discontinuity design. Yet,
prognosis weighting may suggest greater cause for concern.

Consider the excellent study by Samii (2013), who assesses the consequences for ethnic tolerance of serving
in an integrated military in Burundi in the aftermath of a brutal, ethnically charged civil war. Using for
identification a discontinuity design based on a military retirement age, the paper shows that serving in an
ethnically integrated military decreased prejudicial behavior, though not necessarily the salience of ethnicity.
To assess identification conditions, Samii (2013, 569-70) uses balance tests with pre-treatment covariates
that have ”strong potential to confound were they to exhibit discontinuities near the cutoff.” These include
noncommissioned officer status; years in the military; years of prewar education; wartime death rates per
military unit; and family wartime mortality. Informally, Samii describes why each of these pre-treatment
covariate might be linked to ethnic tolerance (the outcome variable). The prognosis R2 is .194 (Table 1),
indicating that measured covariates are jointly fairly predictive of the outcome. However, as with other

10Details on the analyses for each study are in Online Appendix Section 1.
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standard balance tests in the literature, there is no formal measurement of the informativeness of individual
covariates.

In fact, it turns out that prognosis varies substantially across the individual covariates included in the
balance tests. In the standardized prognosis regression of prejudice on covariates, the coefficient is just 0.007
on years of prewar education, while the standardized coefficient on years in the military is -0.468 (see our
Figure 2 and Online Appendix Section 1). Per Figure 2, the latter, prognostic covariate is also the only one
for which as-if random would be rejected in a covariate-by-covariate difference of means test (p-value 0.013).
And because the most prognostic covariate is imbalanced, while less prognostic covariates are statistically
balanced, the prognostic-weighted omnibus test rejects as-if random (p-value 0.018), while an unweighted test
does not (Table 1).

Thomas (2018) and Blattman (2009) provide similar examples of imbalance on prognostic variables (Figure
2). As shown in Table 1, prognosis-weighted tests therefore call into question as-if random (p-value 0.016 in
Thomas; 0.042 in Blattman) and continuity (p-value 0.000 in Thomas). In the case of Blattman’s study of
the effects of child soldiering in Uganda, the author spotted the imbalance on the prognostic age variable (see
Figure 2) and controlled for this single covariate in treatment effect regressions. Blattman (2009, 232) argued
that in the Ugandan Lord’s Resistance Army, “abduction parties were under instruction to release only young
children and older adults” but other indiscriminately kidnapped ”adolescent and young adult males,” leading
to the imbalance on age across abducted (treatment group) and non-abducted (control group) youths.

Formal diagnosis of prognosis—and graphical assessments like those in Figure 2—can generally aid
the identification of such prognostic, imbalanced covariates. In some studies, like Blattman’s, qualitative
understanding of the treatment assignment process may support an argument that treatment assignment is
independent of potential outcomes—but only conditional on an imbalanced, prognostic covariate. In other
studies, identification of such covariates may call into question the assumption of a valid natural experiment
or discontinuity design.

5.1.2 Prognostic balance

In another set of studies, we find the opposite situation: noise covariates are imbalanced, but there is statistical
balance on prognostic variables. In these cases, a naive unweighted test may imply a failed design, but a
prognosis-weighted test instead supports key identification conditions.

Novaes (2018), for example, uses a close-election design to assess whether barely winning an election
causes mayors (who often play the role of partisan brokers) to switch parties at lower rates than near
losers.11 The author conducts balance tests on 27 covariates (see our Figure 2 and Online Appendix Section
1). Our analysis suggests statistical imbalance on several of these variables, but these covariates are all
essentially non-prognostic. In contrast, more informative variables are tightly balanced. The p-values from
prognosis-weighted tests therefore do not reject as-if random or continuity.

Kim (2019) is another example of a study with substantial imbalance on non-prognostic variables. The
author exploits a discontinuity design based on a population threshold that assigns direct democracy to
municipalities in Sweden to study effects on the political inclusion of newly enfranchised women. The author
tests for balance on nine covariates. Four are negligibly prognostic, with standardized coefficients in the
regression of women’s turnout (the primary outcome) on covariates that are near zero; two of these noise
variables are significantly imbalanced. By contrast, lagged turnout is highly prognostic, with a coefficient
of 0.575 yet also statistical balanced (p-value 0.244). Finally, three variables—the pre-treatment tax base,
share of agriculture in the economy, and land area—are both moderately prognostic and imbalanced (with
respective prognosis coefficients and p-values of 0.115 and 0.000; -0.224 and 0.041; and -0.157 and 0.003).
By combining information on imbalance and prognosis across covariates, an informativeness-weighted test
helps to sort out these contrasting signals: an unweighted test of as-if random rejects (p-value ¡ 0.000) while
prognostic-weighted tests reject neither as-if random nor continuity. This is also a highly prognostic set of
covariates overall (prognosis R2 of 0.541, per Table 1).

Boas and Hidalgo (2011) provide a final example in which there are imbalances in some placebo tests—but
only with non-prognostic covariates. In this study, the authors study the effect of political incumbency on

11Novaes (2018) also studies whether this effect was influenced by a sudden court decision that restricted elected politicians
from switching parties during their term.
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control of the media, using a close-elections design.12 To assess as-if random and continuity of potential
outcomes, Boas and Hidalgo (2011, 876) present covariate-by-covariate tests for 18 variables. Difference-of-
means tests reject the null for three (our Figure 2): an indicator for the state of Minas Gerais (”uf mg”),
the vote share of president Lula of the Worker’s Party in 1998, and the log of the electorate size (”votes”).
However, these three variables have small standardized prognosis coefficients (-0.045, -0.001, and -0.038,
respectively) in the regression of politician’s control of local media on covariates (see Online Appendix Section
1). Other covariates, including the most prognostic covariates such as latitude (prognosis coefficient -0.167) or
time since application for a radio license (prognosis coefficient 0.323), are balanced. Boas and Hidalgo (2011:
875) argue that the pattern of imbalance across the 18 covariates ”is approximately what one would expect if
incumbency status had been randomly assigned.” However, rules of thumb for the number of covariates that
should be imbalanced in expectation do not readily apply, given dependence across covariates.

Pooling information across the different covariates to construct a single omnibus, prognosis-weighted test
allows a more conclusive test than covariate-by-covariate comparisons. Thus, with the Boas and Hidalgo
(2011) data, prognosis-weighted tests reject neither as-if random nor continuity (our Table 1). The tests
properly discount imbalances on non-prognostic variables.

5.1.3 Mixed prognostic balance and imbalance

In a final set of studies, there is imbalance on some prognostic and noise covariates, and balance on others.
In these cases, the prognosis-weighted test is crucial for sorting out the relative weight of the balance and
imbalance among prognostic covariates and for providing a single test statistic that can summarize the
evidence for or against the identification conditions.

Fouirnaies and Hall (2014) provide one example. Per Figure 2, a large number of both prognostic and
noise variables are statistically balanced, as indicated by the gray shading. However, several prognostic
covariates are also statistically imbalanced. While unweighted tests of as-if random and continuity reject the
nulls, prognosis-weighted tests do not.

In sum, in standard covariate-by-covariate tests, analysis of different variables would lead to different
conclusions about identification conditions. And there is no way in typical practice to assess how meaningful
is each test, because measures of prognosis are not provided. Prognosis-weighted tests instead combine
information across covariates and properly base conclusions on the most informative of the variables.

5.2 Case study: are close elections really random?

Finally, consider a prominent controversy over the randomness of close elections. Contributions to this recent
debate illustrate all three of the problems (1)-(3) with covariate balance tests that we have highlighted. Our
reanalysis of these data synthesizes previous results but also leads to new substantive conclusions and suggests
the need for additional study and data collection.

In a very close election, which party winds up with a slightly greater vote share at time t may seem quite
plausibly as-if random (Lee 2008, Lee and Lemieux 2010).13 If true, this facilitates study of the impact of
party incumbency on electoral or other outcomes at time t+ 1.

Yet, in an important study, Caughey and Sekhon (2011) critically appraise this assumption for close U.S.
House elections (1942-2008). Presenting a series of covariate differences-of-means tests in a small neighborhood
around a 0% difference in Democrat-Republican vote share, they show statistically significant imbalances
in past incumbency, as well as the winning party’s past vote share, campaign spending, and measures of
candidate quality. This appears to undermine as-if random.

In an excellent subsequent study, Eggers et al. (2015) extend the Caughey and Sekhon study to a broad
range of majoritarian elections around the world. Observing that lagged party incumbency seems to be the
major driver of imbalances in Caughey and Sekhon’s data, they compare close election winners and losers
only on this covariates. They find balance on past incumbency in every other setting they examine. Thus,

12City council candidates who barely won an election had more than twice the probability of approval of a community radio
license, compared to those who barely lost.

13Later, we discuss another possible identification condition for close-election designs—the continuity of average potential
outcomes at the threshold determining treatment assignment.
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they conclude that the observed imbalance in U.S. House elections may reflect special features of that context
or is simply be due to chance.14

5.2.1 The three problems of balance testing in close elections

Consider now, however, how the three problems of covariate balance testing we have discussed impact the
conclusions that can be drawn from this controversy.

(1) First, covariate prognosis is not measured or reported.
Caughey and Sekhon (2011) and Eggers et al. (2015) emphasize the importance of lagged party incumbency,

and variables correlated with it, as key covariates for balance tests. However, they do not empirically assess
each covariate’s prognosis. Nor do they report measures of the overall associations of covariates used in
balance tests with outcomes.

This is important because, as we show next, covariate prognosis in fact varies substantially both within
and across these studies—and not always in the way one might expect a priori. This variation has important
implications for interpreting the strength of the balance tests.

(2) Second, individual covariates are not equally informative—yet this variation is not incorporated in
tests.

As shown in Figure 2, both the (a) imbalance and (b) prognosis of individual covariates varies substantially
in the Caughey and Sekhon (2011) data on the U.S. House. Several covariates are imbalanced, but many
are not. And while covariates as a whole appear jointly informative, with a prognosis R2 of 0.49 (Figure 1),
many individual covariates are not prognostic—with standardized regression coefficients near zero.

Unfortunately, there is no formal procedure that takes into account the unequal informativeness of different
covariates.15 And covariate-by-covariate tests offer no ready way to reconcile the contrasting results: some
tests reject and others do not, so one cannot readily infer the overall strength of the evidence for or against
as-if random.

Prognosis-weighted ombnibus tests address these problems. As shown in Table 1, the prognosis-weighted
test rejects as-if random in Caughey and Sekhon’s (2011) data, but an unweighted test does not. This is
likely because, as Figure 2 suggests, there are large imbalances in several prognostic variables. Consistent
with De la Cuesta and Imai (2016), the prognosis-weighted test does not reject the weaker assumption of
continuity, even though the test is based on the most prognostic covariates. In each case, the omnibus statistic
provides a rejection rule based on formal accounting for the varied prognosis of different covariates, while also
addressing multiple testing concerns.

We note also that conclusions using Caughey and Sekhon’s data are sensitive to the treatment of missing
data. Our software implementation, by basing the test of as-if random on the vector product of prognosis
coefficients and differences of means as in equation (5) in section 7.2, allows us to use the full set of data
available for each difference of means, as in covariate-by-covariate tests. However, listwise deletion leads to
meaningfully different results, in particular an insignificant test statistic for as-if random. See discussion of
the treatment of missing data in Online Appendix Section 8.2.

(3) Third and perhaps most importantly, weak covariate prognosis in existing cross-national tests does
not allow for informative tests of identification conditions.

Building on the importance of lagged party incumbency in the U.S. House, Eggers et al. (2015) in fact
test for balance only on this covariate.16 This approach is entirely understandable as well as practical:
lagged party incumbency is readily available across elections and countries, whereas the availability of other
pre-treatment covariates may vary by context.

Yet, the prognostic value of lagged party incumbency in fact varies across countries and types of elections—
and in close elections, it is not in fact prognostic on average. Thus, the correlation between the vote share of

14De la Cuesta and Imai (2016), testing for continuity rather than as-if random and correcting for multiple testing, show
weaker treatment-control imbalances in the original U.S. House data than Caughey and Sekhon. See also Hartman (2021), who
analyzes these data using equivalence and traditional tests.

15Eggers et al. 2015, for example, note the imbalance on measures of lagged incumbency; yet while this variable is prognostic
in the U.S. House, it is not on average across other countries and elections, as we show shortly, underscoring the importance of
formal assessment of prognosis.

16Eggers et al. (2015: 262-3) argue that (a) the variety of characteristics on which winners and losers of close elections may
vary can all be viewed as proxies for (are highly correlated with) incumbency; (b) testing for other covariates introduces multiple
testing concerns; and (c) incumbency “confers electoral benefits in a variety of electoral settings around the world.”
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the incumbent party at time t− 1 and time t is 0.79 across all countries and election types but varies from
a low of 0.09 in Brazilian mayoral elections to a high of 0.91 in the German Bundestag (full data set); in
close elections (defined by a bandwidth of 0.5, i.e., the margin between the winning and runner-up party is
less than 1 percentage point), it varies from a high of 0.32 in New Zealand’s post-war parliament to a low of
−0.16 is the Canadian House of Commons (1867-1911) (see Tables A1-A2 in Online Appendix Section 1.2).

Most concerningly, the average prognosis is essentially zero across all close elections (Figure 1 and Appendix
Table A2).17 For reasons we discussed in sections 3 and 4, this weak covariate prognosis implies that the
cross-national balance tests are uninformative about the balance of potential outcomes in close elections.

5.2.2 Close elections: methodological and substantive conclusions

Measurement of prognosis and implementation of prognosis weighting helps to synthesize and explain
contrasting previous results in the study of close elections.

Yet, weak prognosis in a cross-national dataset of close elections runs the risk of misleading general
conclusions. With the Eggers et al. (2015) data, prognosis-weighted tests reject neither as-if random nor
continuity (Table 1). Yet, as we have shown, balance tests using irrelevant, non-prognostic covariates cannot
validly support or falsify key identification conditions. In particular, they are prone to false negatives.

The failure to measure and account for prognosis—common to all the studies—therefore considerably
weakens the conclusions that can be drawn. A finding of statistical balance on a single non-prognostic
covariate, as in Eggers et al. (2015), cannot compellingly support the general as-if randomness of close
elections cross-nationally.

More generally, the results underscore the critical importance of measuring prognosis formally and
incorporating it into analyses. Prognosis is an empirical question. A priori, it appears natural that lagged
party incumbency would be highly correlated with future incumbency. In fact, the correlation is negligible
across different countries and types of elections.18

These findings imply that the methodological debate about close elections is far from settled. We do not
view our results as yet confirming or contradicting the identification conditions in general. They instead
suggest the need to leverage a richer set of prognostic covariates for cross-national tests.

6 Conclusion and recommendations

Covariate prognosis is a critical consideration for balance testing. We have shown that weak prognosis of
covariates can lead to both false negatives and false positives in tests of key identification conditions. Different
covariates vary in their informativeness about potential outcomes. Prioritizing more prognostic covariates
can increase the power and specificity of tests.

Unfortunately, covariate prognosis receives little attention in prominent studies. Existing applications do
not distinguish between informative and uninformative covariates, nor they assess the overall prognosis of the
variables used in tests. They may thus not validly test key identification conditions.

We expand in this concluding section on the recommendations summarized in the introduction.
(1) Measure and report prognosis. As the examples from the close-election debate suggested, empirical

assessment of prognosis is critical. Goodness of fit measures, such as the Prognosis R2 from a regression of
control potential outcomes on covariates, are useful. High values indicate little residual variation in potential
outcomes once we condition on covariates. Related measures such as root-mean-squared error can be used to
compare prognosis across different covariate sets and fitting methods.

We also urge researchers to inspect the prognosis of individual covariates and the extent the most predictive
variables are balanced or imbalanced. Our software implementation facilitates this by producing plots of
imbalance against prognosis for individual covariates, as in our Figure 2.

Reporting measures of covariate prognosis can help to address an additional concern, which is that a
researcher degrees-of-freedom problem can also hinder balance testing. That is, analysts who claim to have

17Restricting the analysis to close elections may attenuate correlations by truncating the range of variation on incumbent vote
share at time t; yet this is the relevant subset of the data in which to assess prognosis, since this is the set in which balance tests
are typically conducted. Note that prognosis is substantially higher in the post-war U.S. House elections studied by Caughey
and Sekhon, with a prognosis R2 of 0.83 in the full data and 0.49 in close elections (Figure 1).

18See Schiumerini (2025) on the varied effects of incumbency across national contexts and types of elections.
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discovered a natural experiment might (intentionally or inadvertently) selectively report, omitting tests for
the most prognostic covariates if they suggest failures of as-if random.

Requiring diagnostics of prognosis can ameliorate this problem as well. If reviewers request measures of
prognosis to help them assess the likely strength of balance tests, researchers will have incentives to collect
data on the most predictive covariates possible. Researchers will then be “rewarded” (rather than only
“penalized”) for using informative covariates in balance tests.

(2) Maximize overall prognosis. Researchers should seek to collect data on the most jointly prognostic
covariates possible for use in their balance tests. There is no single recipe for finding such covariates. However,
theoretical and substantive knowledge may suggest what pre-treatment variables are likely to be most closely
associated with outcomes in a particular context. Often (though not always), the pre-treatment value of the
outcome variable is predictive of potential outcomes. Lagged outcomes should thus be prioritized for data
collection, where feasible.

This emphasis on maximizing prognosis also naturally raises the question: how informative must covariates
be to allow valid testing of as-if random? While there is no absolute answer to this question, our theory
and simulations suggested how different levels of prognosis lead to different error rates. Our simulations
suggest reasonable performance even with Prognosis R2 in the range of 0.1-0.2, though this depends on the
specifics of the data-generating process and is only intended as a rough guide for adequate informativeness of
covariates. In general, the more predictive covariates are of potential outcomes, the more informative and
useful are the covariate balance tests.

(3) Prioritize informative covariates. Researchers should then prioritize the most individually informative
covariates in balance tests, providing an omnibus p-value from a prognosis-weighted procedure in either a
traditional or equivalence framework.

Our analysis also raises the question of the specific prognosis-weighting procedure, for instance, whether
to use a linear approach to fit prognosis weights or a more flexible regression or machine learning procedure.
Indicators of fit from prognosis models can guide the choice of methods. Overall, however, we find that
linear tests do remarkably well at boosting power and specificity, even in the presence of highly nonlinear
processes for outcomes. Given the greater simplicity and interpretability of the weighting procedure, we
recommend reporting results from a linear method. Saturated models including polynomials and interactions
can sometimes increase power over simple linear methods.

As we urged, researchers can also use covariate-by-covariate tables showing prognosis coefficients for each
variable. This allows for better understanding of the particular pattern of observed balance and imbalance
across prognostic and non-prognostic variables and thus the factors that drive rejection or non-rejection of
as-if random or continuity in a prognosis-weighted omnibus test.

We believe that use of the procedures we recommend will lead to more powerful and specific tests of key
identification conditions in applied work. At a minimum, it represents an improvement over current practice,
in which covariate prognosis is typically completely ignored.

Covariate balance testing itself as only one component of assessing identification conditions that facilitate
causal inference. Qualitative evidence on the process of treatment assignment is important (Dunning 2012).
Testing itself is complementary to other objectives, including optimization of observed balance to estimate
treatment effects as well as sensitivity analysis (Rosenbaum 2010).

Yet, testing identification conditions by examining the distribution of covariates in treatment and control
groups should have an important role in design-based analysis of experiments, natural experiments, and
discontinuities. Unfortunately, observed balance can be irrelevant when covariates are not associated with
potential outcomes. By instead leveraging the power of prognosis, researchers can build more useful,
informative tests.

7 Technical appendix

In this appendix and in the online supplementary materials, we formalize the arguments in the paper and
discuss ancillary results.
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7.1 A prognosis-weighted test statistic

Consider first a study with a finite population of N units indexed by i = 1, . . . , N and one treatment and one
control condition. Let Yi(1) and Yi(0) be potential outcomes under exposure to treatment and to control,
respectively. The causal effect for each unit is τi = Yi(1)− Yi(0), while the Average Treatment Effect (ATE)
is τ = E[Yi(1)−Yi(0)], where the expectation is taken over the draw of a single unit at random from the finite
population.19 The random variable Zi ∈ {0, 1} denotes treatment assignment, with 0 for the control group
and 1 for the treatment group; an N × 1 random vector Z collects the Zi. This set-up is design-based in that
the only source of random variation is the treatment assignment vector Z; potential outcomes are fixed.

As-if random (Assumption 1) motivates the following testable null and alternative hypotheses:

H0 : E[Y (0)T − Y (0)C ] = 0

HA : E[Y (0)T − Y (0)C ] ̸= 0. (1)

Here, Y (0)T is the average value of potential outcomes under control in the treatment (“T”) group sample,

while Y (0)C is the average value of potential outcomes under control in the control (“C”) group sample.
Both are random variables when treatment assignment is randomized.

The logic: if as-if random holds, the treatment and control group averages can be viewed as the means of
samples drawn at random from the same finite population. Thus, the expected averages are the same in each
sample, as under the null hypothesis H0. Conversely, if treatment assignment were not randomized so that Z
depends statistically on {Y(1), Y(0)}, it follows that the average potential outcomes in the treatment and
control groups differ in expectation—as under HA.

To test H0, the problem is to estimate the unobserved difference of expectations in (1). This in turn

requires a procedure for predicting Y (0)T in the treatment sample, where potential outcomes under control
are not observed. Then, we can form a test statistic as the difference

δPW =
÷
Y (0)T −÷Y (0)C , (2)

that is, the fitted average Y (0) in the treatment group minus the fitted average Y (0) in the control group.

Essentially, we fit ‘Y (0)|X in the control group, which gives us prognosis weights, and then apply this weighting
procedure to the covariates in the treatment group.

In sum, the test statistic δPW is the prognosis-weighted (”PW”) difference (”δ”) in fitted values across
the treatment and control groups. We focus on fitted potential outcomes under control, as in e.g. Hansen
(2008) and Stuart et al. (2013). This is because pre-treatment values of the outcome variable, which are
sometimes measured, may tend to be especially prognostic for Y (0).

7.2 A regression-based test

We focus first on linear regression-based fits for the test statistic in (2). A test based on this approach leads
to a simple and readily interpretable test statistic: the weighted difference of covariate means across the
treatment and control groups, where the weights are measures of prognosis.

Consider first the sample regression of the outcome variable on covariates in the control group:÷
Y (0)C = XC ”βC (3)

= Y (0)C ,

where the 1× p vector XC gives the average value of the p covariates in the control group and the p× 1 vector”βC gives the coefficients from the control group regression.20 Descriptively, the control group regression
evaluated at the average value of the covariates is exactly the sample average Y (0)C . While we cannot fit the
analogous finite-population regression—because we do not see Yi(0) for units in the treatment group—under

19This formalization embeds the stable unit treatment value assumption (Cox 1958, Rubin 1978).
20Here, ”βC = (

∑n0
i=1 XiX

′
i )

−1
∑n0

i=1 XiYi(0), is a p×1 vector with elements β̂j for j = 1, . . . , p. Here we index by i = 1, . . . , n0

the random subset units sampled into the control group from the N units in the finite population.
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as-if random the control group is a simple random sample from the finite population. Equation (3) can thus
be viewed as a regression-weighted estimator for the average potential outcome under control in the finite
population (Cochran 1977, Chapter 7).

As for the treatment group, we cannot run a regression like equation (3), because in the treatment sample
we observe Y (1) rather than Y (0). However, under a null hypothesis of as-if random, the expectation of the
coefficient we would obtain—if we could run the regression in the treatment sample—is clearly the same as

the expectation of ”βC . We can therefore estimate the average of the potential outcomes under control in the
treatment group as ÷

Y (0)T = XT ”βC , (4)

where XT is the vector of average values of covariates in the treatment group.
Subtracting (3) from (4) gives an estimator of the unobserved difference of the expectations (1), valid

under H0. Thus we have

Ê[Y (0)T − Y (0)C ] = (XT −XC)”βC

=

p∑
j=1

”βC
j δj (5)

≡ δPWLR,

with “PWLR” for ”prognosis-weighted linear regression.”
Thus, the key test statistic δPWLR is the prognosis-weighted difference of covariate means across the

treatment and control groups. Each δj in (5) is the difference of means on covariate j, while the weight”βC
j is the jth coefficient from the control-group regression of outcomes on covariates. To ensure that the

contribution of each term to the sum is not a function of the measurement scale, we recommend standardizing
Y (0) and all covariates; this is the default option in our R package pwtest. The standardized regression
coefficients will be larger in absolute value for more prognostic covariates, while they vanish when the partial
correlation between Y (0) and Xj is zero.

It is important to emphasize that β, the coefficient of the finite- population regression corresponding to
the sample regression in (3), has no causal interpretation: the regression simply provides the best linear
approximation of the potential outcomes Y (0) given X. Covariates are fixed features of units that are not
here considered amenable to manipulation; even if they were, there is no expectation or requirement that
manipulation would lead to expected changes in the value of the outcome variable. The procedure simply
allows for measurement of covariate prognosis. Thus, as with other procedures we consider next, the test
statistic δPWLR combines information on prognosis across covariates to form an ombnibus statistic to which
we may attach a single p-value to test H0. This may lead to more powerful and specific tests than do standard
procedures (subsection 4.2).

The use of the regression-based test has several possible advantages, relative to more flexible procedures we
consider in subsection 7.3. One is its simplicity and intelligibility: here, the weights (regression coefficients) are
readily interpretable as the (linear) prognosis of the respective covariate, relative also to the other covariates.21

Another is its close connection to current practice. The test uses the inputs of standard balance tests—
covariate differences of means—and combines them into a single, readily interpretable prognosis-weighted test
statistic. Thus, rejection of as-if random in tests using δPWLR will be due to treatment-control differences of
covariate means, as in standard covariate-by-covariate tests. Yet, unlike standard practice, the test prioritizes
the variables most informative about potential outcomes. We assess the relative performance of different
tests in subsection 4.2.

7.2.1 A resampling-based (bootstrap) hypothesis test

For hypothesis testing, we propose a resampling (a.k.a. bootstrap) technique which allows comparison of the
observed value of a test statistic to its exact randomization distribution.22 The procedure uses draws from the

21This is by the Frisch–Waugh–Lovell (FWL) theorem or “regression anatomy” (Angrist and Pischke 2009: 3.1.2). Each
element βj of p× 1 vector of coefficients β in the analogous finite-population regression can be represented as the coefficient
from the bivariate regression of Y (0) on the residual of Xj on the other p− 1 covariates.

22On randomization tests, see Fisher (1935); also inter alia Caughey et al. (2017).
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observed data to approximate the null sampling distribution of δPW , i.e., its distribution when as-if random
holds. Thus, for δPWLR, we draw two independent samples of potential outcomes from the control group;
fit the prognosis regression in one of them; calculate a bootstrap test statistic, i.e., the prognosis-weighted
difference of means; and repeat the bootstrap B times in order to compare an observed test statistic to its
randomization distribution. For non-linear fitting methods discussed next, the procedure is parallel but uses
the chosen non-linear regression or machine learning procedure in place of linear regression.

The validity of the bootstrap rests on two key features. First, the expectation of the covariate difference
of means e.g. in δPWLR is zero, as it is when treatment assignment is randomized. Thus, we compare the
expected values of averages of two independent samples drawn from the same finite bootstrap population.23

Second, the procedure allows in a natural way for the statistical dependence between the random variable
β̂C—as realized in the control group—and XC , with treatment assignment as the only source of stochastic
variation. Note that the bootstrap uses only values of Y (0) from the control group to simulate the distribution
of prognosis weights.

This bootstrap procedure can be adapted to accommodate a wide range of designs, for instance, those
with clustered or blocked assignment. We also note that using control group values to estimate the weights
does not induce a bias from overfitting, a problem that can arise when study outcomes are also used for
estimating average treatment effects (Rubin 2007; Hansen 2008; Liao et al. 2023). Further details are in the
Online Appendix (Section 4).

7.3 Flexible non-linear tests

The fitted value approach also leads naturally to alternative, more flexible nonlinear techniques. The predicted
potential outcomes in δPW in equation (2) can be formed by a host of methods.

In subsection 4.2 and Online Appendix Section 7, we explore the performance of two main alternatives.
First, we extend the linear regression-based approach of subsection 7.2 to include polynomial terms and a full
set of covariate interactions. Thus, a fully “saturated” regression produces the fitted values.

Second, we extend our software pwtest to allow for a host of more flexible methods, including machine
learning (ML) techniques. The options include, among others, generalized linear models with LASSO,
Bayesian Additive Regression Trees (BART), random forests, and gradient boosted trees. The strategy is the
same across all methods and follows the following steps:

1. Fit ÷Y (0)C on covariate set XC (i.e., subsetting to control units), using a given method;

2. With the resulting fit, obtain ÷Y T (0) using treatement-group covariate values XT ; and

3. Calculate the observed δPW as defined by equation (2).

The software bootstraps a hypothesis test and associated p-values using the approach described in subsection
7.2.1 and returns diagnostic measures of prognosis. Details are in Online Appendix Section 5.

In subsection 4.2, we use simulations to assess the performance of the saturated regression and two widely
used ML methods—gradient boosted trees and random forests (Breiman 2001; Hastie et al. 2009; Zhou 2012;
Chen and Guestrin 2016)—as well as the performance of a procedure for choosing the ”best”-fitting model
that we discuss next.

7.3.1 Cross-validation and choice of methods

Our pwtest function also allows for an automated selection of the method with the best predictive performance.
In this case, the method that predicts Y (0) most accurately from covariates in the control (or training)
group is selected for use in the resulting test procedure. For the ML methods, this is also based on a
k-fold cross-validation process for selection of hyperparameters using control group units only. To select an
appropriate fitting procedure in a data-driven way, the software picks the estimation method with the highest

23The observed treatment and control group means are dependent and the samples are drawn without replacement. However,
Xi is the same whether unit i is assigned to treatment or control. Per Neyman (1923), it is thus as if the two samples were
drawn independently with replacement (see Freedman et al. 2007: A32-A34; Samii and Aronow 2012, Theorem 2; Gerber and
Green 2012: 57; or Dunning 2012: 193).
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R2 on the task Y (0)|X in the control group. We discuss further details in subsections 4.4 and 7.5 of the
Appendix.

Ideally, the procedure for selecting the fitting procedure should be pre-specified in advance of testing.
However, we also note that for reasons described in subsection 7.2—especially simplicity and interpretability
of the weights—there may often be a rationale for using the baseline linear approach (the default in pwtest),
even if non-linear methods can provide a slight improvement in power, and we recommend also reporting
tests using this simple approach. We return to discussion of this point in connection with the simulation
results in subsection 4.2.

7.4 Regression-discontinuity designs: testing the continuity of potential out-
comes

We now turn to the adaptation of prognosis-weighting to regression-discontinuity (RD) designs.
Analysts have rightly noted that in many RD designs, as-if random should be replaced with the (weaker)

assumption that the regression functions relating potential outcomes to the forcing variable (a.k.a. the
running variable or “score”) are continuous at the threshold determining treatment assignment (Calonico
et al. 2014; De la Cuesta and Imai 2016).24

In this case, the key condition to test is not as-if random (Assumption 1) but rather:

Assumption 2 (Continuity of Potential Outcomes—RD Designs) Potential outcomes regression functions
are continuous at the threshold determining treatment assignment.

Continuity implies that the limits of the regression functions are the same approaching from above and
below the threshold. This motivates the standard approach of testing for the equality of intercepts of two
regressions, fit above and below the threshold value of the running covariate.

However, researchers typically test for the continuity not of potential outcomes—but of covariates. Thus,
they regress each pre-treatment covariate separately on the forcing variable, above and below the RD threshold,
and conduct a test for equality of the intercepts at the threshold.

Unfortunately, such tests for the continuity of covariates may not be informative about the continuity
of potential outcomes. Just as with tests of as-if random, researchers are subject to false negatives and
false positives due to irrelevant covariates (section 3.2). Covariates may be continuous at the threshold
and yet potential outcomes may not be; or vice versa. The standard approach also raises the problems of
indeterminacy and multiple testing (De la Cuesta and Imai 2016), as in covariate-by-covariate tests of as-if
random.

Fortunately, we can readily form a prognosis-weighted test statistic that is appropriate for testing continuity
of potential outcomes in RD designs. Following our previous approach of using only the prognostic part of the
covariates, we first project the outcome variable on covariates on the control group side of the RD threshold.
Then, we fit regressions—not of covariates, as in standard practice, but of fitted potential outcomes—on the
running variable, on each side of the threshold.

Thus, let ‘Y (0) = X”βC be the fitted value from a regression of the outcome on covariates on the control
group side of the RD threshold, where Y (0) is observed. Now, following standard presentations of RD
estimation methods (see e.g. De la Cuesta and Imai 2016), we fit two regressions. First,

(α̂0, β̂0) = argmin
α0, β0

n∑
i=1

I{c0 ≤ Ri ≤ c}{’Yi(0)− α0 − β0(Ri − c)}2K
Å
Ri − c

h

ã
(6)

is the intercept and slope from a regression of ‘Y (0) on the forcing variable to the right of the threshold
(centered at the threshold). Here, Ri is the forcing variable, c is its value at the assignment threshold, and c0
is the value that defines the edge of the control-group bandwidth. Similarly,

(α̂1, β̂1) = argmin
α1, β1

n∑
i=1

I{c < Ri ≤ c1}{’Yi(0)− α1 − β1(Ri − c)}2K
Å
Ri − c

h

ã
(7)

24This may especially be so when the slope of the regression function relating potential outcomes to the forcing variable is not
flat (see Dunning 2012 Chapters 3 and 5; Cattaneo et al. 2015; Sekhon and Titiunik 2017). When it is flat, the assumption
of as-if random within a small bandwidth around the threshold may be the relevant condition to test, using the techniques
discussed in sections 7.2 and 7.3 with a few modifications (Appendix Subsection 9.1).
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is the intercept and slope from the regression on the treatment-group side, including units up to c1.
25

Conceptually, it is as if we regressed each pre-treatment covariate on the forcing variable in windows
below and above the assignment threshold, as in standard practice. However, we combine these separate
regressions into one omnibus prognosis-weighted test statistic,

δRD
PW ≡ α̂1 − α̂0, (8)

where α̂0 and α̂1 are the intercepts at the assignment threshold of the regressions of ‘Y (0) on the forcing
variable, on the control-group and treatment-group sides respectively (Online Appendix Section 5.2.2).26 We
can then test the null hypothesis that the expectation of this difference is zero against the alternative of a
non-zero difference (or we can flip the null and alternative, as in equivalence testing, discussed next). As the
test is based on a single omnibus statistic, it also avoids the problems of indeterminacy and multiple testing
associated with covariate-by-covariate tests.

In sum, the test of continuity—as with the test of as-if random—projects out irrelevant covariates and
bases assessment on the most informative covariates. See Online Appendix Section 9.2 for further details.

7.5 Equivalence testing

Finally, prognosis weighting can also be adapted to take advantage of equivalence tests (Hartman and Hidalgo
2018). Equivalence tests seek to address the “balance test fallacy” (Imai et al. 2008, Section 7), in particular,
the problem that failing to reject the null of as-if random is not the same as accepting it. With traditional
tests, researchers may fail to reject simply because a study is small and underpowered.

The test works by switching the null and alternative hypotheses, so that under the null, the expected
means in the treatment and control group differ, while under the alternative they are approximately equal.
Equivalence tests are less likely to reject the null of difference as study size shrinks (Hartman and Hidalgo
2018, Figure SI-2), so acceptance (rejection of the absence) of as-if random is less likely to be an artifact of
low power.

Prognosis-weighted equivalence tests can provide an additional protection against the balance test fallacy.
In Online Appendix Section 5, we adapt the bootstrap procedure in subsection 7.2.1 for equivalence testing.
Here, the most informative covariates must be sufficiently balanced to reject the null hypothesis of difference.
Thus, as long as covariates are sufficiently jointly informative, prognosis weighting ensures that we will not
“accept” as-if random unless covariates related to potential outcomes are sufficiently balanced.

It is important to note, however, that an equivalence test based on covariates with weak joint prognosis
is subject to similar limitations as traditional tests. Thus, we may reject the absence of as-if random
based on the balance of the most prognostic individual covariates, among the set at our disposal. Yet, if
measured covariates are not as a whole prognostic, there could readily be lurking prognostic variables that are
unobserved and imbalanced. Were we successfully to measure these prognostic covariates, we might instead
reject (fail to reject the absence of) as-if random.27

The way around this difficulty—as with traditional testing—is to ensure that we have measured covariates
that are adequately jointly prognostic. The best advice may be thus to develop high-powered tests—either
traditional or equivalence-based—by leveraging jointly prognostic covariates and then prioritizing balance of
the most informative individual covariates, as in our prognosis-weighted test.

25As recommended by Calonico et al. (2014) and Cattaneo et al. (2020), equations (6) and (7) are triangular kernel-weighted
local linear regressions; K(·) may be a function such as the triangular kernel, K(u) = (1 − |u|) · I{|u| < 1}. The bandwidth
[c0, c1] can be chosen by the algorithm of Imbens and Kalyanaraman (2012); this is the default option in our R package pwtest.

26For clarity, we separate the fitted intercepts α̂0 and α̂1 from β̂0 and β̂1, the fitted coefficients on the centered value of the
forcing variable, Ri − c. Note, however, that the latter are distinct from the fitted coefficients of the regression of Y (0) on

covariates X. These, which we label ”βC as before, are fit in the prognosis regression.
27A further drawback is that researchers may find evidence for or against as-if random by varying the equivalence range.

Alternatives that lessen this discretion—for instance, use of the equivalence confidence interval (Hartman and Hidalgo 2018)—
make equivalence testing more akin to traditional balance testing since in the latter, one can also readily examine a (1−α)∗100%
confidence interval to see what parameter values lie outside of it.
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