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Abstract

Disparities in lending to minority applicants persist even as
algorithmic lending finds widespread adoption. We study the
role of risk-management constraints, specifically Value-at-
Risk (VaR), in inducing inequality in loan approval deci-
sions, even among applicants who are equally creditworthy.
Empirical research finds that disparities in the interest rates
charged to minority groups can remain large even when loan
applicants from different groups are equally creditworthy. We
develop a formal model in which a mainstream bank (low-
interest) is more sensitive to variance risk than a subprime
bank (high-interest). If the mainstream bank has an inflated
prior belief about the variance of the minority group, it may
deny that group credit indefinitely, thus never learning the
true risk of lending to that group, while the subprime lender
serves this population at higher rates. We formalize this as a
“subprime trap” equilibrium. Finally, we show that a small,
finite subsidy (or partial guarantee) can help minority groups
escape the trap by covering enough of the mainstream bank’s
downside so that it can afford to lend and learn the true risk of
lending to the minority group. Once it has sufficiently many
data points, it meets its VaR requirement with no further as-
sistance, minority groups are approved for loans by the main-
stream bank, and competition drives down the interest rates
of subprime lenders.

Introduction

Algorithmic lending has grown rapidly as scalable ML
methods achieve wide adoption among both existing lenders
and new market entrants, bringing with them the possibility
of significantly improving the fairness of financial decisions
based on observable data about loan applicants (Khandani,
Kim, and Lo 2010; Bono, Croxson, and Giles 2021; Berg,
Fuster, and Puri 2022; Remolina 2022). However, inequal-
ities persist in both loan approval rates and interest rates
charged to minority applicants versus white applicants, and
a switch to algorithmic lending procedures does not neces-
sarily improve outcomes on either metric (Romei and Rug-
gieri 2013; Zliobaité 2017; Quillian, Lee, and Honoré 2020;
Giacoletti, Heimer, and Yu 2021; Aliprantis, Carroll, and
Young 2022; Bartlett et al. 2022; Fuster et al. 2021). These
inequities exist against a background of historic discrimi-
nation in US retail banking to individuals (Quillian, Lee,
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and Honoré 2020), businesses (Blanchflower, Levine, and
Zimmerman 2003), and a long-standing “racial wealth gap”:
persistent differences in median household wealth by ethnic
group (Charles and Hurst 2002; Derenoncourt et al. 2023;
Althoff and Reichardt 2024).

Notably, disparities in interest rates and loan approvals
persist even when minority applicants have comparable
credit scores to majority applicants (Bayer, Ferreira, and
Ross 2016; Popick 2022; Crosignani and Le 2023). This
combination of facts creates a puzzle: are lenders selecting
on observable risk factors? And if not, why, besides explicit
discrimination, might they be failing to lend to minority ap-
plicants?

Several empirical findings help us to understand this puz-
zle. First, ethnic groups sort across lenders, with minorities
more likely to accept loans from high-interest rate banks ver-
sus conventional lenders, even conditional on credit score.
Bayer, Ferreira, and Ross (2016) write:

African-American and Hispanic borrowers tend to
be more concentrated at high-risk lenders. Strikingly,
this pattern holds for all borrowers even those with
relatively unblemished credit records and low-risk
loans... High-risk lenders are not only more likely
to provide high cost loans overall, but are especially
likely to do so for African-American and Hispanic
borrowers. These lenders are largely responsible for
the differential treatment of equally qualified borrow-
ers.

Modern algorithmic lending systems operationalize risk
assessment through machine learning models trained on
historical data. Minority applicants disproportionately have
“thin credit files” with limited payment history data, and this
data sparsity directly manifests as higher prediction variance
in ML models Blattner and Nelson (2021a). When banks
face risk-management constraints, the higher predicted vari-
ance translates into higher rates of loan denial. Because de-
nied applicants never generate repayment data, banks can-
notthen learn that their variance estimates were inflated, cre-
ating a self-reinforcing equilibrium of exclusion.

It is this set of stylized facts that motivates our model.
How do minorities with good credit scores end up with no
choice but to accept high-cost loans? To answer this ques-
tion, we consider the role of risk management constraints



when banks have imperfect information about their appli-
cant pool. Lending is a problem of imperfect information:
banks do not know the exact probability that a given bor-
rower will repay a loan, and so must use observable charac-
teristics as a proxy for repayment probability (Adams, Einav,
and Levin 2009; Crawford, Pavanini, and Schivardi 2018).
Banks rely on credit scoring, which is subject to known bi-
ases, and has lower quality information about the creditwor-
thiness of minority applicants (Blattner and Nelson 2021a).
Reliance on credit scores can therefore lead banks to hold in-
accurate prior beliefs about minority applicants, which can
sustain equilibria in which minority groups systematically
lose out (Coate and Loury 1993; Kim and Loury 2018).

We study the effect of Value-at-Risk (VaR) constraints on
loan approval decisions (Artzner et al. 1999; Jorion 2000).
Our analysis focuses on a formal model in which a main-
stream, or “low interest rate”, bank exhibits heightened sen-
sitivity to variance risk relative to a subprime, or “high inter-
est rate”, bank. We show that when the mainstream bank has
inflated prior beliefs about the variance repayments from the
minority group, VaR constraints bind, which means that it
will then systematically refrain from extending credit to that
group. This reluctance then prevents the bank from updating
its beliefs regarding the true risk, thereby locking minority
borrowers into higher-cost subprime lending arrangements.
We describe this mechanism as “the subprime trap”.

Our Contributions

First, we contribute an analysis of risk management con-
straints to the study of algorithmic fairness. We help address
a puzzle of general interest: why might banks fail to extend
loans even when they would otherwise be profitable? Sec-
ond, we bring details of real-world banking practices into
the study of algorithmic fairness. We introduce a two-bank
equilibrium framework in which the mainstream bank en-
forces a more stringent VaR requirement than its subprime
counterpart. Under these conditions, an erroneous initial es-
timate of the variance of the minority group leads the main-
stream bank to permanently refrain from lending to that
group. Third, we formalize the resulting equilibrium (The-
orem 1) and demonstrate that the minority group is conse-
quently confined to subprime loans, despite having the same
average creditworthiness as the majority group. Fourth, we
establish that the provision of a modest, finite subsidy, or
partial guarantee, can resolve this equilibrium inefficiency.
By adequately mitigating downside risk, the subsidy enables
the main bank to lend and learn about the creditworthiness of
the minority group. With an updated assessment of risk, the
bank eventually meets its VaR requirements without con-
tinued external intervention, thereby extending mainstream
credit at favorable rates.

This investigation contributes to the literature by high-
lighting how inaccurate risk metrics, in conjunction with
risk-based capital constraints, can systematically exclude
certain borrower groups from low-interest credit. Our results
further imply that targeted subsidies can effectively rectify
informational failures, yielding improved outcomes for both
lenders and minority borrowers.

Related Literature

Our work contributes to several strands of literature, includ-
ing algorithmic fairness in lending, the economics of dis-
crimination, and the role of informational frictions in sus-
taining suboptimal market equilibria. In the domain of al-
gorithmic fairness, recent research has examined how in-
creasingly sophisticated data-driven methods in credit scor-
ing may inadvertently perpetuate or exacerbate disparities
(Barocas and Selbst 2016; Barocas, Hardt, and Narayanan
2023; Kumar, Hines, and Dickerson 2022). While algorith-
mic approaches promise enhanced accuracy, empirical evi-
dence indicates that minority applicants often face higher in-
terest rates or are denied credit outright (Bartlett et al. 2022;
Crosignani and Le 2023).

Discrimination is a classical topic in economics, studied
in a large theoretical and empirical literature (Becker 1971;
Phelps 1972; Lundberg and Startz 1983; Arrow 1998; Heck-
man 1998; Cowgill and Tucker 2019). Building on this tradi-
tion, subsequent studies have explored how negative stereo-
types or misperceptions of risk may translate into adverse
outcomes for minority borrowers (Fang and Moro 2011;
Coate and Loury 1993). In a manner analogous to these
analyses, our work demonstrates that inflated beliefs about
repayment variance can result in a self-reinforcing equilib-
rium whereby minority groups are persistently relegated to
subprime lending markets.

A related literature examines the role of informational
frictions and the corrective impact of policy interventions
(Akerlof 1970; Akerlof and Shiller 2015; Thaler 2016).
Cai et al. (2020) studied contexts in which banks can ac-
quire improved information about borrowers’ creditworthi-
ness through selective experimentation. Donahue and Baro-
cas (2021) study the trade-offs between solidaristic insur-
ance policies, in which minorities are subsidized in accor-
dance with risks that are causally related to their minority
status, and actuarially-fair insurance policies, in which ev-
eryone pays premia equal to their marginal risk.

Our work also relates to work on delayed feedback with
respect to implementation decisions in machine learning set-
tings (Liu et al. 2018; Pagan et al. 2023; Chaney, Stew-
art, and Engelhardt 2018). We describe a setting in which
mainstream banks are stuck in a negative feedback loop:
their failure to learn about applicant creditworthiness is self-
sustaining. Our work is also related to literature on subop-
timal outcomes with bandits. Honda and Takemura (2013)
prove that Thompson Sampling’s optimality depends criti-
cally on prior specification, while Ghosh, Chowdhury, and
Gopalan (2017) show that any algorithm achieving optimal
performance under perfect model specification must suffer
linear regret under misspecification. This mirrors our set-
ting where banks with incorrect variance priors never ex-
plore lending to certain groups. The dueling bandits frame-
work of Yue et al. (2012) captures competition between
lenders, establishing information-theoretically optimal algo-
rithms for pairwise comparisons. Frazier et al. (2014) study
how to incentivize exploration when arms are pulled by self-
interested agents — our approach, in which subsidies encour-
age banks to ‘learn through lending’, is closely related to
this setting.



Finally, our work contributes to a broader effort to model
rational but suboptimal decision-making by or with respect
to disadvantaged groups.Diana et al. (2024) model pes-
simism traps and herding behavior as individuals grapple
with cycles of noisy and censored information when making
decisions about potentially higher reward but riskier ends.
Our argument is similar in broad outline to that of (Foster
and Vohra 1992; Hu and Chen 2018), who argue that tem-
porary interventions in the labor market to address discrimi-
nation may lead to long-run improvements in the fairness of
observed decisions.

Preliminaries and Model

We analyze a multi-period environment indexed by ¢ =
1,2,...,T, where T may be arbitrarily large or unbounded.
At the onset of each period ¢, the high-interest (subprime)
bank selects an interest-rate premium ~(*). Each loan ap-
plicant belongs to one of two groups and applies simulta-
neously to both the mainstream (low-interest) bank and the
subprime bank. The mainstream bank charges a baseline rate
normalized to 1, while the subprime bank charges 1 + ().

Each bank evaluates whether to approve or reject each
applicant in that period, seeking to maximize its expected
profit subject to a risk-management constraint. If an appli-
cant receives approvals from both banks, the applicant typ-
ically accepts the offer with the lower interest rate; if only
one bank approves the loan, it is accepted. After the loans
are finalized, each bank privately observes its payoff. Con-
sequently, a bank that rejects an application or whose offer
is declined does not observe the repayment outcome for that
applicant.

At the end of period ¢, both banks update their beliefs
regarding the repayment distribution for each group, em-
ploying a Bayesian learning procedure described in Section .
These updated beliefs affect the subprime bank’s subsequent
choice of premium v(**1) and both banks’ lending decisions
in period ¢ 4 1.

Loan Applicants

There are two groups, denoted by i € {W, B}. W represents
the racial majority, while B represents the racial minority.
Each group has a payoff distribution 7r§t) ~ N (11i,02). The
bank’s return from appproving a loan depends on this real-
ized payoff.

Assumption 1 (Equal expected creditworthiness).
Vt:E[ﬂ"(/Q} :uW:uB:E[ﬂ'g)} >0

First, we assume that both groups have the same expected
creditworthiness. We do this because we want to study the
specific case where minority and majority racial groups are
equally creditworthy. We allow their variances, o3, and 0%,
to differ.

We suppose that each group strictly prefers to accept a
loan rather than not, and strictly prefers to accept the cheap-
est loan. We assume that applicants randomize if both loans
have the same price. We denote each group’s decision to ac-
cept the loan with S; € {0,1}

Lenders

The model features two banks: Bank L, which offers low-
interest (mainstream) loans, and Bank H, which provides
high-interest (subprime) loans. We refer to banks with the
index j. In each period, both banks decide whether to extend

a loan to each group. Let A;t) € {0,1}? denote the vector
of approval decisions made by the bank j at time ¢.

Bank payoff functions If the bank issues a loan to an ap-
plicant from group ¢ in period t, it earns a payoff that de-
pends on the realized value of 771@. We normalize the inter-
est rate of Bank L to 1, so that its profit II in period ¢ is given

by
) = 3 50 Al

In contrast, Bank H charges an interest rate of 1 4 v, with
v > 0. It has profit function:

Hg) = Z Si(t)AEg [(1 + v®) max {ﬂ'gt), 0} + min {wgt)

Here, positive returns are amplified by a factor of 1 + v®),
whereas losses are incurred on a dollar-for-dollar basis.

Risk Management Constraints We next suppose that
banks face a risk management or solvency constraint. That
is, there is some level of financial loss that is ‘unaccept-
able’ to the bank. This may be due to regulatory constraints,
such as Basel III or Dodd-Frank, or liquidity constraints (Li
2014). This loss threshold is probabilistic: the bank is will-
ing to accept some nonzero risk that their loss from making a
loan falls below a certain threshold, but wants to specifically
limit the probability that this occurs to less than a risk tol-
erance a%. Typically, this value is set to 1% or 5% (Jorion
2000).

We model this with a per-period Value-at-Risk (VaR)
constraint (Artzner et al. 1999). That is, we require that the
bank’s anticipated profit in each period must be greater than
some constant p; < 0 with probability at least 1 — . We can
think of p; as the bank’s maximum acceptable loss. Equiv-
alently, the bank is willing to accept an a% risk that their
profit will fall below the bank’s risk management threshold
Pj-

Definition 1 (Value-at-Risk (VaR)).

VaRy(X) = —inf{z|P[X < z] > a}

We adapt this by requiring that each bank j in period ¢
faces the constraint that:

]P’(Hg»t) < pj> <«

This simply states that the bank will accept a risk of at most
a% that their profit in period ¢ falls below p;.

We suppose that this constraint is lexically prior to the
profit-maximization objective: the bank must satisfy the VaR
constraint in order to lend at all.

Combining each bank’s payoff function with their VaR
constraint, we can write each bank’s optimization problem
as follows:



arg max Hg-t)

® (Ag't)) subject to P(Hgt) (A(t)) < pj)
Al

J

This says simply that each banks chooses the approval de-
cisions that maximize profits subject to satisfying their VaR
constraint. As we shall see below, the maximand depends
on the expected value of the applicants’ payoff function y;,
while the VaR depends on both the mean and the variance of
the applicant group’s payoff function.

Bank beliefs The actual profit H§-t> is unknown ex ante,
however: it is only observed once a loan has been approved
and accepted. Banks must therefore instead make decisions
based on prior beliefs about the profitability of approving a

loan. Denote by 1" the bank’s posterior estimate of profit
from lending at time ¢. Each bank instead must solve the
feasible problem:

arg max ﬁ;t) <A§t)> subject to P(ﬂ§t> (A;t)) < pj)
A

Which, importantly, depends on bank beliefs about appli-
cants. We assume that each bank j has initial prior beliefs
regarding the parameters of the distribution of returns from
issuing a loan to a member of group i, specifically:

Definition 2 (Bank’s prior beliefs). Each bank j has prior
beliefs:
~(0) ~(0)
{/Lz] ) Uzg }iE{W,B}

We assume that both banks have accurate beliefs about the
variance of group W. This does not have significant impli-
cations for the analysis, since the problem of interest is how
banks respond to differentially imperfect information about
lenders’ creditworthiness. This assumption also reflects em-
pirical findings that credit score data is differentially missing
for minority group applicants versus majority group appli-
cants (Brevoort, Grim, and Kambara 2015).

Assumption 2 (Group W’s variance is common knowledge).

We assume that &I(,g) = ow for both banks.

Learning through lending In each period, if a bank ex-
tends a loan to an applicant from group ¢, it observes the
realized repayment and updates its risk assessment for that
group via Bayesian updating.

Lemma 1 (Belief Updating via Bayes Rule). If bank j lends

to group i, it observes a return 7rit and then updates its pos-
terior beliefs about the variance o?. After M such observa-
tions, its posterior belief takes the form of:

1 () ()2
N ~ m —(M
U%(M) =37 1 (Uf(t» + mE—l(ﬂi’B —T,B ) )
M
—(M m
Where: 71',573) = g 771‘(,3)

m=1

<«

A key assumption in our analysis is that a bank updates
its estimate of the variance for group ¢ only when it observes
repayment outcomes from that group. Thus, if a bank never
lends to group B, it will not receive data on the performance
of loans to that group, and incorrect prior belief about B’s
variance will not be updated.

Our Modeling Choices

VaR and CVaR Value-at-Risk is a commonly used risk
management measure in practice, and is explicitly ref-
erenced in the Basel III banking regulations (Li 2014;
Chang et al. 2019). We could also study the Conditional
Value-at-Risk, or Expected Shortfall, which is related to
VaR via the formula: ES(X) = 1 [*VaR,(X) d. The
intuitions underlying our model carry through to the CVaR
metric: there is a threshold variance at which the CVaR will
be violated.

Inaccurate prior beliefs Our model supposes that banks
have inaccurate beliefs about the creditworthiness of appli-
cants. This is a plausible outcome when decisions are made
on the basis of credit scoring data that is either biased or
noisy. Credit scores may be inherently noisier representa-
tions of underlying default risk for minority groups (Blat-
tner and Nelson 2021a), while the components of the score
may themselves be low quality indicators of repayment abil-
ity (Rice and Swesnik 2013). Empirical work shows that
banks are more likely to avoid lending to minority neighbor-
hoods, thereby lowering the quality of information received
about lenders in those neighborhoods (Blattner and Nelson
2021b). Noisier estimates of credit risk are likely to lead to
inflated prior estimates of variance in practice.
Risk-pooling We study three cases: where banks lend uni-
laterally to each group, and where banks lend to both groups.
In the unilateral setting, there is no risk pooling, and banks
make decisions based only on single group characteristics.
However, when banks are willing to lend to both groups,
risk pooling occurs, where the lower-risk group essentially
subsidizes the risk of lending to the higher-risk group. This
case is studied in Donahue and Barocas (2021). Below, we
derive variance thresholds for each of the three cases.

Single-Period Setting

We first study the stage game, to show how the VaR con-
straint affects lending to group B in each period. Note first
that we assume that Bank H charges an interest rate premium
to derive variance thresholds. We then prove that this oc-
curs. Second, note that we derive variance thresholds for the
pooled variance — thresholds under which banks will lend to
both groups. Because the variance thresholds are ordered, it
follows that if the bank’s variance pooled threshold is not
satisfied, it will not unilaterally lend to the minority group.
It also follows that if the bank’s pooled threshold is satisfied,
the bank will unilaterally lend to the majority group.

First we assume that Banks have unilateral thresholds for
lending to each group:



Lemma 2 (Unilateral Lending Thresholds).

~L _ PL—H

7T ()

s _pr—(+v)p
()

These represent the thresholds under which each bank is
willing to lend unilaterally to a given group.

Each bank also has a pooled variance threshold, under
which it is willing to lend to both groups.

Lemma 3 (Pooled Variance Threshold for Bank L). Con-
sider Bank L, which offers loans at a normalized interest
rate of 1, lendmg to group B with a random payoff given by

i ~ N (13, 02). Bank L lends to both groups in period t if
and only if group B’s variance satisfies:
_pr— (pw + pup + @ Ha)ow)
nol - -1 (Oé)

50 <5

In other words, there is an upper bound & on the Bank’s
beliefs about the variance of group B, such that the bank is
only willing to lend to group B if it believes that group has
lower variance than this threshold. Otherwise, its risk of a
shortfall exceeds a%.

A similar analysis for the subprime bank H reveals that it
tolerates a higher level of variance. We have:

Lemma 4 (Pooled Variance Threshold for Bank H). Bank
H lends to group B and group W in period t if and only if

O'g)H < Jpw,, where:
GH _ PHZ [+ v (pw + pp) + 2~ a)ow]
poul (I),l(a)

Corollary 1 (Ordered variance thresholds). While v(!) > 0,
and for o < .1:

0<ét<aol, <5 <s

poo. ool

Intuitively, gains are scaled by the factor (1 + v(®)),
providing the high-interest rate bank additional insulation
against downside risk. Thus, when the perceived variance of
group 7 is between 67 and 6, the low-interest Bank L will
decline to lend, while the high-interest Bank H can approve
the loan.

The Subprime Trap

We now consider the multi-period setting in which lending
decisions influence the evolution of banks’ beliefs about bor-
rower creditworthiness.

Assumptions

We make several assumptions. These model stylized facts
that characterize the subprime trap. First, we suppose that
the variance of both groups is in fact below the threshold
&%, though the variances are not necessarily identical.

Assumption 3 (Both groups are creditworthy). oy <
~L
op <o

This is intended to describe a situation in which the low-
interest rate bank would lend to both groups under perfect
information.

We characterize beliefs under imperfect information in
which lending to group B does not occur. We suppose that
Bank L holds a prior that the variance of repayments for

group B is &](_.3% such that:
Assumption 4 (L’s prior Variance for group B is above its

risk threshold). oB >0 poo,

Where apool is the maximum variance that Bank L (the
main lender) can tolerate under its constraint VaR. Based
on its initial assessment, lending violates the risk limits of
Bank L.

Third, Bank H, which operates at a higher interest rate
and has a correspondingly higher risk tolerance. The hlgh—

rate bank has a lending threshold 57 such that 57 > apool
(0)

Denoting bank H’s prior by 6 5, we suppose that:

Assumption 5 (H’s prior variance for group B is below its
risk threshold). & O) <t

Consequently, Bank H is prepared to lend to group B.

Equilibrium

In each period, banks choose simultaneously whether to lend
to groups W and B. Both types of bank approve group W’s
loan application, and group W chooses the lower-rate, main-
stream bank. Based on their prior beliefs about B’s vari-
ances, H approves B’s loan application, but L does not. If
Bank L does not lend to group B, then group B is left with
the subprime option from Bank H. But since Bank L’s be-
lief update depends on observing a return from group B, if
it does not lend to group B at period t, it does not have an
updated posterior belief to use as its prior at period ¢ + 1: its
beliefs do not change. The crucial observation is that if Bank
L persistently withholds loans to group B, it never observes
the repayment data needed to update its inflated variance es-
timate, and its belief remains at 0(0)
We now formalize this result.

Theorem 1 (Subprime Trap Equilibrium). Suppose As-
sumptions 1-5 hold. Then, there exists a Bayesian subgame-
perfect equilibrium in which, in every period, Bank L lends
exclusively to group W, and Bank H lends to group B with
high probability, permanently relegating group B to sub-
prime loans.

Proof. We show by induction that the low-cost bank never
lends to group B.
First, in the base case, the bank does not lend to group B.

We have that A(l) = 0, since, by Lemma 1, if the bank’s
prior belief is 0(0) and 0;3}4 > gL . then Az(-jl-) =0.

pool®
To show the mductlon step, we show that if the bank does

not lend to B in period £, then it does not lend to B in period

t + 1. For this, we have that A(t) 0 — it _
(

v]

) , because no updatlng occurs, but since A(Hl) 1if

() < 5 (1)

and only if &; we have that 65 > &pool and

pool ’



I = 6l — SH) > L, so that A<t+1) = 0. This

Vejrlﬁes the 1nduct10n step.
This shows by induction that the low-cost bank never
lends to B. Since the bank does lend to W, we have that the
optimal decision for Bank L is to lend exclusively to group
W in every period.
Next, consider Bank H. By hypothesis, Bank H believes

that a( ) < &, and therefore lending to group B satisfies
its nsk Constralnt in the initial period. Moreover, since the
true mean pp is positive, lending to group B is expected
to yield a positive return. Bank H lends to group B with
high probability, because in each stage there is a (vanishing)
probability of observing a payoff realization that increases
Bank H'’s posterior belief about group B’s variance above
its threshold. This probability goes to zero by the SLLN,
however.

The borrowers act accordingly. Group W, faced with a
lower interest rate from Bank L, accepts that offer, while
group B, having no offer from Bank L, accepts the loan from
Bank H.

Finally, note that because Bank L never lends to group B,
it never observes any repayment outcomes from that group.

This implies that the variance estimate for group B remains

at 053% > ol ool 11 €very period. As a consequence, there is

no incentive for Bank L to deviate from its strategy of lend-
ing only to group W, and similarly, neither Bank H nor the
borrower groups have incentives to deviate from their pre-
scribed actions. Hence, the described strategy profile consti-
tutes a subgame-perfect equilibrium.

Remark 1 (Purely Informational Failure). Even if the true
variance of group B were such that op < aﬁm,, Bank L
would remain unaware of this fact unless it extends credit to
group B. The absence of new data prevents Bank L from up-
dating its risk assessment, leading to an inefficient outcome

in which group B continues to access only subprime credit.

Remark 2 (Equal Creditworthiness). It is noteworthy that
the equilibrium outcome emerges solely from differences in
prior variances. Since i = puw = 4, the two groups are
identical in terms of average creditworthiness; the discrep-
ancy stems entirely from the combination of incorrect be-
liefs about borrower variance, and the risk assessment con-
straints imposed by VaR.

Escaping the Subprime Trap via Subsidies

‘We now show that a subsidy or partial lending guarantee can
help group B escape the subprime trap. The key idea is to
cover sufficient downside risk so that Bank L is induced to
lend to group B. When this occurs, Bank L can gather in-
formation on group B’s repayment performance. Since, by
Assumption 1, group B, is in fact creditworthy, Bank L’s be-
liefs will eventually converge to group B’s actual variance,
which, by Assumption 2, is low enough that L’s VaR con-
straint will be satisfied. Once enough observations have been

accumulated, Bank L will update its risk assessment so that

the estimated variance satisfies O‘(B)L < &%, eliminating the

need for further subsidy.

Lemma 5 (Learning through Lending). & BI L — op almost
surely as m — oo

By Lemma 3, this is the condition required for Bank L to
lend to group B, so that the VaR constraint is satisfied. In
other words, if the mainstream bank were to lend to group B
for a sufficiently long period of time, it would learn about the
variance of returns due to lending to group B. The problem
is then how to induce the bank to do so.

To encourage Bank L to lend to group B, we introduce a
subsidy mechanism.

First, we define our subsidy as the smallest side-payment
that would allow the bank to satisfy its VaR constraint in
period {. We have:

s*® :inf{szo : P(H;t)+s<pj> ga}

This allows us to solve for the optimal subsidy.

Lemma 6. In each period t, the required subsidy is equal
to:

5 = maX{O, pr—(pw +pp) — @~ (a) (65, +Uw)}

If s; < 0, no subsidies are needed; otherwise, the regula-
tor covers any shortfall up to s}, ensuring that Bank L meets
its VaR restriction.

We formalize the adaptive subsidy mechanism in Algo-
rithm 1.

Algorithm 1: Adaptive Subsidy to Escape the Subprime Trap

. . . ~(0 .
Require: Parameters: py, o, u, initial variance 053]);, hori-

zon 1.
1: Setm < 0  (# of observations from group B)
2: fortel,--- ,Tdo

3. whiles')) > 55 do
4 if A% = 1 then
5: g; —

1

(m) %
I+ Zm<t H{ABL = 1}

~2(0 m —(t—1 2 1z
(630 + Sty =1y (=87 - 727)")

else

e
>
f\
3
)
>
s
=
|
_
=

5"« max{0, pr. — (uw + pp)

~0~1(a)(6%), + ow)}

10: end while
11: end for

The subsidy incentivizes Bank L to lend to group B, gen-
erating observations that allow its risk assessment to con-
verge to the true variance 0%. Once the updated estimate

satisfies Jg)L < &L, it follows from Lemma 2 that Bank L

meets its VaR constraint without subsidy (i.e., s* (t)), and no
further external support is required.



We now state the main result regarding the subsidy mech-
anism.

Theorem 2 (Escaping the subprime trap). Assume that the
true distribution of repayments for group B is N(p,0%)
with og < &L, but that Bank L initially believes that the
variance is (}1(5?% > &L, Under the subsidy mechanism de-
scribed above (Algorithm 1), with probability one there ex-
ists a finite time T such that for all t > T, Bank L updates

. . . ~(t ~
its variance estimate so that U(B)L — 0B < O'L and conse-

quently s*®), Beyond time T, Bank L continues lending to
group B without further subsidy.

In short, the subsidy induces the bank to update their in-
formation about minority group creditworthiness. It is also
temporary when there exist otherwise creditworthy borrow-
ers trapped in subprime loans: subsidizing information dis-
covery helps banks to learn the true variance of lender
groups. Further, while algorithmic audits could correct bias,
subsidies can avoid privacy hurdles and scale faster (Cowgill
and Tucker 2019).

Corollary 2 (Long-term benefits of subsidy). For t >
7, v =0.

In any round in which the low-interest bank would ap-
prove group B’s loan, the high-interest bank will choose to
set its premium to zero. If it chooses any positive premium,
neither group will accept the loan. If it chooses a premium
of zero, both groups will randomize over accepting the loan
from bank B and accepting the loan from bank . Since this
persists for all ¢ > 7, this reduces interest rates permanently
— competition reduces the premiums charged by subprime
lenders.

Conclusion

Inequalities in algorithmic lending practices can persist even
when minority applicants are as creditworthy as white ap-
plicants. We study one explanation for this phenomenon:
the role of risk-management constraints, specifically VaR,
in contributing to persistent disparities in lending. We have
shown that risk management constraints can lead lenders
to refuse loans even with positive Net Present Value. This
forces minority applicants to accept high-interest rate loans,
with negative implications for their financial prospects, a sit-
uation we describe as the “subprime trap” equilibrium. We
emphasize the role of inaccurate prior beliefs about the risk
of lending to minority groups, which leads to systematic ex-
clusion and higher borrowing costs.

Our theoretical results align with documented patterns
in mortgage lending markets. First, the persistence of our
subprime trap equilibrium mirrors the decade-long stability
of racial lending disparities documented in mortgage mar-
kets, even as algorithmic lending has expanded Bartlett et al.
(2022). Second, our model’s prediction that mainstream
banks never update their beliefs about minority creditwor-
thiness is consistent with Bayer, Ferreira, and Ross (2016).
Third, the equilibrium’s existence despite equal creditwor-
thiness directly explains the puzzle identified by Popick
(2022) and Crosignani and Le (2023): why minorities with

comparable credit scores remain concentrated at high-cost
lenders.

Implementation of our subsidy mechanism maps natu-
rally onto existing policy infrastructure. The Federal Hous-
ing Administration’s mortgage insurance programs already
function as partial guarantees, covering lender losses when
borrowers default on FHA-insured loans (U.S. Department
of Housing and Urban Development 2024). Similarly, the
Community Reinvestment Act provides regulatory credits to
banks for community development loans and investments in
low- and moderate-income neighborhoods (U.S. Congress
2013; Board of Governors of the Federal Reserve System
2024). Our analysis suggests these programs could achieve
greater impact if restructured to explicitly target variance re-
duction during a learning period; guaranteeing tail risks for
a finite horizon would enable banks to update their risk as-
sessments while avoiding solvency-affecting losses.

Our analysis focuses on one specific mechanism:
variance-based discrimination through VaR constraints. Ob-
served lending disparities likely result from multiple in-
teracting factors including historical discrimination, geo-
graphic segregation, and differential access to financial ser-
vices.

Nonetheless, targeted, temporary interventions, such as
subsidies or guarantees, can break this cycle by allowing
banks to learn true risk profiles. These findings suggest prac-
tical avenues for addressing lending disparities and offer
a framework to explain failures of fairness in algorithmic
lending decisions.
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Appendix
Proof of Lemma 1

Proof. This is the posterior variance estimate from a Nor-
mal model with known mean and prior hyperparameters

{1,629, O

Proof of Lemma 2

Proof. First, we suppose that Bank L lends to group W, and
derive a threshold rule for the prior variance o g holding oy
fixed such that this rule determines whether or not Bank L
will lend to group B.

First, we note that it is profitable in expectation for Bank
L to lend to group B, because, by Assumption 1, E[rg] =
wp > 0.

We then need to check Bank L’s VaR constraint. It is:

Pr (H@ < ol Aps = 1) _ g P (Bt pw)
! 6(t) +o
B w

Where ®(-) is the cumulative distribution function of the
standard normal distribution. This entails that

pr — (1B +uw)>

Pr (Hgt)|ABL:1<pj) <a<= o NG
’ og +ow

Rearranging, we get the condition that:

) _ pL— (pw + pp+ @ Ha)ow)
op < —
> (a)
Where the right-hand side defines a variance threshold o'
such that, if group B’s prior variance is above this threshold,
Bank L will not lend to group B:

o=1(a)

Next, we show that Bank L always lends to group W.
Recall that, by Assumption 2, Group W’s variance is com-
mon knowledge: this reflects the assumption that banks have
higher quality information about the creditworthiness of the
majority group.

Checking the VaR constraint in the unilateral case, we
generate the threshold:

PL — kW
< Pz W
= 2
Since we know that, by Assumption 3, this condition is
satisfied, Bank L is willing to lend to W unilaterally. As-

sumption 3 also tells us that &g)) is above this threshold,
indicating that Bank L will not lend to B unilaterally.
Hence, Bank L will lend to group W unilaterally, and will

lend to group B in addition to group W if and only if group
B’s variance satisfies 62)) < éL. O

Proof of Lemma 3
Proof. Bank H’s VaR constraint can be written as:

~ (1)

N
Pr (H§t)<pj|ABL:1) _ o [P+ VI(us +pw)
op +ow

Rearranging, we get:

pr — (L +v)(pw + pp) + 7 1(a)ow]

’\(t) < ~H
7 o 1(a)

Opg =

O



Proof of Corollary 1

Proof. This can be deduced by inspection, but note that, by
convention, a < .1, so that ®~(a) < 0. O

Proof of Lemma 4

Proof. This follows by application of the Law of Large
Numbers. O

Proof of Lemma 5
Proof. In each period, the Bank has belief, Wg) ~
N (1, (6%4))2), so that:

pr — (pw + i) — s
IP’(H§”+S<pL)=‘1’<L (bw + pB) )

6%2 + ow

Thus, to guarantee % < a, we require
opr, +ow

pr — (uw + p1p) — s

(t)

< @ Y(a),
opr +ow

which rearranges to

s> pr— (nw + pp) — @71 (a) (6], + ow).

The minimal such subsidy is therefore:

sy = maX{O, pr — (uw + up) — @ 1a) (&g)L + Uw)}.

O

Proof of Theorem 2
Proof. We prove the theorem in three steps.

First, by design the subsidy s*® ensures that when Bank
L lends to group B, the bank’s VaR constraint is satisfied,
that is,

P(Hgt) + s < pL) < o.

Thus, the presence of s*®) makes lending feasible even un-
der Bank L’s initial risk assessment &g)L > L. Conse-
quently, if the expected net profit (inclusive of the subsidy)
is positive, Bank L has an incentive to lend to group B.
Second, every time Bank L extends a loan to group B,
it observes a repayment drawn from N (i, 0%). Let m be

the number of such observations. Denote by c?gn)Q the sam-

ple variance computed from these m observations. By the
Strong Law of Large Numbers,
5'gn)2 — 0% almost surely as m — co.
Because o < 6%, there exists a (finite) index m* (and thus
a finite time 7) such that for all m > m* the updated esti-
mate satisfies:
op <60 < 5L

Third, once the updated variance estimate satisfies 6%2 <

&%, we can evaluate the required subsidy as

s = maX{O»PL—(#W+NB)_(I)71(O‘) <&g)L+UW)} =0

by the same calculation as in Lemma 5. Thus, for all ¢ > T,
Bank L is able to satisfy its VaR constraint without any sub-
sidy. Since the number of observations required is finite al-
most surely, we conclude that with probability one there ex-
ists a finite 7 such that for all ¢t > T, s*®) = 0 and Bank L
continues lending to group B without further external sup-
port.

This completes the proof. O

Additional Results

We extend Theorem 2 by demonstrating that the conclusion
holds under a broader class of temporary risk-sharing mech-
anisms. Specifically, we show that the subsidy mechanism
described in the theorem is not the only way to induce Bank
L to lend to group B and break the subprime trap. Any guar-
antee mechanism that ensures Bank L satisfies its VaR con-
straint during an exploration phase will suffice, provided it
allows the bank to accumulate sufficient repayment data to
update its risk estimate. We formalize this result as the fol-
lowing corollary.

Corollary 3 (Robustness to Alternative Guarantees). The
conclusion of Theorem 2 holds for any temporary risk-
sharing mechanism that satisfies the following condition:
for each period t of the exploration phase, the mechanism
ensures that

Pr(Il + G(t) < pr) < o,

where G(t) is the guarantee provided in period t. After suf-

. . . . A (1
ficient data collection, the updated variance estimate 0533:

will satisfy &g)L < &%, allowing Bank L to lend without
further guarantees.

Proof. For any such G(t), the VaR constraint is satisfied
during each period ¢ of the exploration phase. Specifically,

Bank L is guaranteed that its effective return, wg) + G(t),
will not fall below py, with probability exceeding «. This en-
sures that the bank has an incentive to lend to group B, pro-
vided the expected return is positive. The guarantee mecha-
nism defined in the corollary generalizes the subsidy mech-
anism from Theorem 2. In the original subsidy framework,
the guarantee function is given explicitly by G(t) = s =

max{0, pr, — (pw + up) — 27 (a) (&S)L + ow )}, which

satisfies the condition Pr(H§.t) + 5 < pp) < . The
corollary allows for any G(¢) that satisfies the same proba-
bilistic constraint. Once Bank L updates its risk estimate to
&g} < &%, the VaR constraint is naturally satisfied with-
out external support. Specifically, the guarantee G(t) is no
longer required, as the bank can safely lend to group B on
its own. Formally, this follows from Lemma 2.

Thus, any guarantee mechanism that ensures the bank’s
effective return satisfies the VaR condition during a finite
exploration phase will induce Bank L to lend, learn group
B’s true risk, and ultimately eliminate the need for the guar-
antee. This completes the proof. O



