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Abstract

Choosing where to conduct an experiment when a researcher is faced with a universe of possible sites is
an important practical problem for applied researchers. I propose a new method to select experimental
sites optimal in terms of Mean Squared Error for the Population Average Treatment Effect (PATE)
and the Conditional Average Treatment Effect (CATE). I show that finding sites optimal for the PATE
requires selected sites that minimize distance between subset covariate means and population covariate
means. For the CATE, the optimal site selection minimizes the difference in distributions between the
selected subset and the population. I develop a novel ensemble method that uses Best Subsets as a base
learner to implement this. I show how the user can incorporate prior information from pilot studies,
information about site variances and sample sizes, and user-specified welfare weights when distributional
impacts of a policy are of interest. Naturalistic simulation studies demonstrate the performance of the
proposed method.
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1 Introduction
Multi-site experiments have become increasingly popular across the social sciences, as researchers seek to
improve the generalizability and representativeness of conclusions learned from experiments (Dunning et al.,
2019; Slough and Tyson, 2023). Recent attention has focused on the statistical properties of an procedure
in which a researcher must decide where to experiment, before actually conducting the experiment.

Randomization has well-studied finite sample properties (Li and Ding, 2016), and is minmax regret
optimal without structural assumptions (Kallus, 2018). However, the site selection problem arguably
highlights the worst-case performance of randomization: the number of chosen sites is small; there may be
significant between-site variation, and the regret of a given randomization procedure can be high (Bertsimas
et al., 2015a; Kasy, 2016). Further, we may have access to good information about sites that allow us to
make informed decisions about what a ‘good’ or representative allocation of sites would look like.

1.1 Contributions

First, I consider the problem of selecting sites that minimize the Mean Square Error of the experimen-
tal estimate of the PATE and the CATE. When covariates are observed and informative, and under an
assumption of no unobserved confounding, I show that we can represent the former problem one of mini-
mizing the distance of mean vectors between subset and population, and that a constrained solution to this
problem chooses the set of sites that minimize the `2 distance between covariate means in the population
and selected subsample. This result is similar to that of Olea et al. (2024), who show that k-medians
minimizes the worst-case welfare-regret of a site selection, and to that of Tipton and Mamakos (2023), who
show a similar result in the context of covariate balancing vectors.

For the CATE, I show that an optimal set of sites in a Mean Squared Error sense minimizes the `2

discrepancy between covariates in the sample and the selected subset. I prove that this can be approximated
by minimizing the `2 Quantile Discrepancy between selected covariates in the subset and population. I
show a connection between this problem and minimizing the Wasserstein Distance between sample and
population: as the quantile mesh over which discrepancy is minimizing becomes increasingly fine-grained,
the two are equivalent, and any solution also solves the optimal transport problem. To the best of my
knowledge, the problem of selecting experimental sites for the CATE has not previously been studied
(Arbour et al., 2021).

To solve these problems in practice, I highlight the connection between the above results and the
classic Best Subsets problem in machine learning. Best Subsets finds K-sparse solutions to estimation
problems, which makes it especially appropriate for site selection problems in which a Researcher faces a
budget constraint, such that they can experiment in exactly K sites. Further, K-sparse solutions to `0
minimization problems can be shown to have better worst-case performance than approximate solutions
based on `1 minimization (for instance, the LASSO) (Zhang et al., 2014). Recent developments in Mixed
Integer Programming mean that it is now possible to implement Best Subsets with optimality guarantees
with practical-length runtimes (Nesterov, 2004, 2012; Bertsimas et al., 2015b). Further, this improved
performance makes it possible to develop ensemble methods based on Best Subsets, in which the base
algorithm is implemented many times with updating based on empirical losses (Zhou, 2012; Littlestone
and Warmuth, 1994).

I develop an ensemble method that uses Best Subsets as a base learner to the mean discrepancy and
distributional discrepancy problems. This involves resampling covariates, and using Monte Carlo Cross-
Validation with Weighted Majority voting to update site selections across iterations.

As an extension, I show how the researcher can incorporate prior information about site-level variances
and site sizes into the decision, and provide options for the Researcher to include welfare weights, and prior
information about treatment effects.
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I show that the method has favourable empirical performance to alternative methods, in terms of both
in-sample performance and out-of-sample performance, across several naturalistic simulation studies. In
the main text, I present results based on Auerbach and Thachil (2018). Because this study involves a
large universe of sites, it is possible to assess both the internal and external validity of our approach by
evaluating the sites chosen by my and alternative methods on both an ‘observed’ and ‘unobserved’ set
of sites. This gives us insight into the finite sample performance of our method, and its performance in
a context in which realistic distribution shift is induced by differences between unobserved and observed
sites.

My method is applicable to a number of other practical problems in statistics and Political Science.
First, it can be used to select units to enroll in an experiment. Second, it can be used to assign treatment
assignments to a fixed set of individuals. Finally, we can also use this method for cluster randomization,
when a Researcher seeks to assign treatment at the cluster-level, once sites have already been selected.

One moral for applied researchers is that there is a trade-off between optimizing for the PATE and the
CATE: in general, one can choose sites that are more representative of the average, or more representative
of the full distribution, but not necessarily both. I describe this as a trade-off between representativeness
and generalizability: and note that this is likely to be of practical significance for applied researchers. This
is a ‘no free lunch’ result in the style of (Wolpert and Macready, 1997).

1.2 Related Approaches

Several approaches to developing site selection methods have been proposed in the literature in economet-
rics, statistics, computer science, and political science.

Olea et al. (2024) is closet to my approach. They prove that k-medians is minmax optimal for reducing
the regret of a site selection, and similarly use a mixed integer program to select sites that solve this
problem.

Egami and Lee (2024) develop a method for site selection based on the Synthetic Control Method
(Alberto Abadie and Hainmueller, 2010; Abadie et al., 2015; Xu, 2017; Sun et al., 2023). They choose
sites that, up to weights, well-approximate sites that are not included in a given selection. This approach
emphasizes choosing sites that define a convex hull, within which excluded sites are contained. I discuss
the differences between my proposal in more detail and this paper in Appendix A.3.

Addanki et al. (2022) use the Gram-Schmidt Walk to find treatment assignments that balance covariates
subject to a constraint on the sample size. This approach benefits from the statistical guarantees of the
Gram-Schmidt process for solving discrepancy minimization problems, but does not produce vectors that
select an exact number of sites for inclusion in an experiment. It was developed with application in the
technology industry in mind, where the sample size may still be large.

Tipton (2013) proposes a method that uses cluster analysis to identify strata of sites. Given those
strata, sites are then randomly sampled from each stratum. Gechter et al. (2024) develops a Bayesian
method, in which a prior distribution over treatment effects based on pilot data, and a prior welfare
function for aggregating estimated treatment effects, are assumed. This enables the Researcher to use
Monte Carlo simulations to evaluate the expected welfare under different site selections: this simulated
posterior then generates estimates of the best (from the perspective of ex post welfare) subset of sites in
which to experiment.

My paper is relevant to an important literature in External Validity, generalization, and distribution
shift. External Validity has emerged as a key concern in empirical research in the social sciences following
important an critique from (Deaton and Cartwright, 2018). Shadish et al. (2002) describe representation (of
a particular population) and generalization (to a particular target population) as the key goals of external
validity. Slough and Tyson (2023) develop a formal framework for external validity based on Blackwell
experiments, which offers an information-geometric formulation of the notion of a space of experiments
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(Murray and Rice, 1993). Within their framework, I consider the problem of minimizing target discrepancy
between selected settings S and a universe of settings P . Findley et al. (2016) and Hartman (2021) provide
formal frameworks for thinking about external validity in applied research contexts. Our goal is to consider
the set of sites that are C-valid based on observables. Like Hartman (2021), we require a contextual
exclusion restriction, or the assumption of no unobserved moderators, in order successfully choose sites.

I also contribute to a literature on ensemble methods in political science. Montgomery et al. (2012)
introduced ensemble methods to political science by motivating Ensemble Bayesian Model Averaging.
Grimmer et al. (2017, 2021) provide overview of ensemble methods in political science, and Samii et al.
(2016) applies the procedure to analysing the results of an experiment to reduce recidivism in Colombia
More recently, ensemble methods have been used across causal inference to learn heterogeneous treatment
effects, with Random Forests, the SuperLearner approach, and the X-Learner being three recent examples
of popular methodologies used by social scientists to learn heterogeneous causal effects (Wager and Athey,
2018; Athey et al., 2019; van der Laan et al., 2007; van der Laan and Petersen, 2007; van der Laan and
Rose, 2011; Künzel et al., 2019).

1.3 Outline of Paper

In Section 2, I describe the problem of purposive site selection, and motivate our optimization approach for
minimizing MSE with respect to the PATE and CATE. In Section 3, I derive the objective function that
minimizes the MSE with respect to the PATE, and note that it is a support-constrained k-means problem.
In Section 4, derive an approximation to the objective function that minimizes the MSE with respect
to the CATE, and note that it is a support-constrained k-quantiles problem, or Quantile Discrepancy
Minimization problem.

In Section 5, I describe how to use recent advances theory and implementation of Best Subsets, and
show how we can apply the method to the problem of site selection. In Section 6, I introduce an ensemble
method based on Best Subsets, in which we aggregate site selections by weighted majority voting. In
Section 7, we develop a naturalistic simulation study based on Auerbach and Thachil (2018). In Section 8,
I extend the method to two cases where we have prior information is available: the first, we have additional
information about pretreatment outcomes from a pilot study; the second, where we have information about
site-level variances. I also show how the user can incorporate welfare weights into the analysis. Section 9
concludes.

2 An Optimization-based Approach to Site Selection

2.1 Setup

We consider a Researcher choosing a subset of sites S from a well-defined finite population of sites P. The
Researcher faces a budget constraint K: they can select up to K sites.1 The Researcher can choose any
set S from the set of subsets of P that contain at most K elements: we write this set as ΣK .

The Researcher must choose a proper subset S ⊂ P of sites, subject to an `0-norm, or cardinality
constraint on S.2 That is, we have that, for some 0 < K < ||P ||0:

||S||0 =
||P ||0∑
s=1

I{ss ∈ S} ≤ K (1)

1It is without loss of generality whether the Researcher’s budget constraint is that they must choose exactly K sites, or up to
K sites: all theory and algorithms apply to both cases.

2||·||0 is the `0 norm, so that ||S||0= #{s : s ∈ S} =
∑

s∈P I{s ∈ S}
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Suppose that the Researcher is interested in either the Population Average Treatment Effect (PATE)
or the Conditional Average Treatment Effect (CATE) over the full population3:

Definition 1 (Causal Estimands)

PATE = Es∼P,i∼Ns [Yis(1)− Yis(0)] CATE = Es∼P,i∼Ns [Yis(1)− Yis(0)|X = x]

Once the experiment is conducted, the Researcher will observe only the sample analogues to these
quantities. But which sample analogue the Researcher will observe will depend on which sites are chosen
for experimentation.

Definition 2 (Sample Quantities)

SATE = Es∼S,i∼Ns [Yis(1)− Yis(0)] SCATE = Es∼S,i∼Ns [Yis(1)− Yis(0)|X = x]

The Researcher’s goal is to minimize the loss between the observed estimate of the PATE or CATE in
the selected sample and the true population quantity. We want to select sites that yield estimates ‘as close
as possible’ to the population causal quantities.

2.2 Causal Minimands

The Researcher wishes to minimize a loss criterion ` : ΣK → R. We can associate with each site selection
a loss. Ns is the number of units in each site s.

The Mean Squared Error, which is the `2 distance between the sample and population quantities, for
each estimand are as follows:

Definition 3 (Causal Estimands)

MSEPATE(S) = Es∼S

[(
Es∼P,i∼Ns [Yis(1)− Yis(0)]− Ei∼Ns [Yis(1)− Yis(0)|s ∈ S]

)2]
MSECATE(S) =

∫
X
Es∼S

[(
Es∼P,i∼Ns [Yis(1)− Yis(0)|Xi = x]− Ei∼Ns [Yis(1)− Yis(0)|Xi = x, s ∈ S]

)2]
dx

The second quantity is closely related to the Precision of Estimated Heterogeneous Effect of Hill (2011);
Shalit et al. (2017).

The goal is to use a site selection procedure to select a set S of cardinality at most K that minimizes
these losses. That is, our site selection problems can be written as follows:

Definition 4 (Site Selection Problems)

min
S: ||S||0 ≤K

MSEPATE(S) min
S: ||S||0 ≤K

MSECATE(S)

3In what follows, I subscript expectations with what is being averaged over: i ∼ Ns denotes that we are averaging over units
NS ; s ∼ P denotes that we are averaging over sites in the population; s ∼ S that we are averaging over sites in the set S.
This follows the convention in Roughgarden (2016)
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These optimization problems are infeasible without further assumptions: we do not observe either potential
outcome in sites we did not choose to experiment in. Further, randomization is minimax optimal for solving
this problem in the absence of any prior structural information about the problem (Senn, 1994; Kallus,
2018).4 This is related to the ‘no free lunch’ theorem of Wolpert and Macready (1997).

2.3 Using Covariates To Select Sites

We can, however, use covariates to construct feasible analogues of the above problems.
Suppose that Researcher observes site-level characteristics across multiple covariates for each potential

site in the study. That is, we have a measurable space of covariates X , which generates the covariates
X = {Xjs}J,Pj=1,s=1, where J is the dimension of covariates and P is the number of sites in the population
P. We also have a space of unobserved variables U .

Under what conditions can the Researcher extrapolate about likely treatment effects, based on covariate
information? We face the following restrictions.

First: covariates must explain some non-negligible amount of variation in treatment effects. That is,
we require that covariates are prognostic (Hansen, 2008; Bicalho et al., 2022; Liao et al., 2024). Second,
we require that covariates do not interact with unobserved confounders (Imai et al., 2008). Third, we
require that potential outcomes do not vary in site specific ways: this is also called the contextual ex-
clusion restriction (Egami and Hartman, 2023). We can formalize these requirements with the following
assumptions:

Assumption 1 (Contextual exclusion restriction)

∀i, s 6= s′ : Yi(Z = z,X = x, S = s) = Yi(Z = z,X = x, S = s′)

Assumption 2 (No unobserved interactions)
For unknown functions γ : X → R, φ : U → R

τis = γ(Xi) + φ(Ui) + εi

The functional form described above satisfies these criteria. In the ideal case, the variance explained by
the collected covariates is large relative to the variance explained by uncollected covariates. We will now
show how to construct feasible analogues to the site selection problems described above using covariate
data.

3 Site Selection for the PATE

3.1 The Infeasible PATE Problem

Consider the problem of minimizing the expected MSE of the PATE:

Problem 1 (Researcher’s Problem: PATE)

min
S

Es∼S

[(
Es∼P,i∼Ns [Yis(1)− Yis(0)]− Ei∼Ns [Yis(1)− Yis(0)|s ∈ S]

)2]
s.t. ||S||0 ≤ K

4A brief sketch of the argument of Theorem 1 in Kallus (2018) is as follows: suppose Nature adversarially chooses the
distribution of site potential outcomes to maximize loss given some particular site selection. Then a completely random
procedure is at least as good as any purposive selection procedure. See also Kasy (2016) and Eberhardt (2010).
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We first show that, if we knew the true model of treatment effects, we would have a minimization
problem for the PATE that is equivalent to choosing a set of sites S that minimizes a weighted difference
of means between the covariates in the population and the covariates in the sample.

Proposition 1 (Infeasible site selection problem for the PATE)
Under Assumptions 1 and 2, the minimizer of:

min
S:||S||0 ≤K

1

P

P∑
s=1

(
E
[
γ(XP)

]
− E

[
γ(XS)

])2

is the minimizer of Problem 1, conditional on unobserved covariates U .

All proofs are contained in Appendix A.1.
The intuition is as follows. If we knew the function γ, we could write:

SATE = E[γ(XS)] PATE = E[γ(XP)] PATE − SATE = E[γ(XP)]− E[γ(XS)]

However, since we have only collected covariate data, we do not know the function γ. Thus, this
minimization problem is infeasible: it depends on information we do not observe.

3.2 A Feasible PATE Problem

To make progress on this, consider plugging in an arbitrary function γ0 in place of γ. By adding and
subtracting terms, our expression for the MSE becomes:

min
S:||S||0 ≤K

1

P

P∑
s=1


(
E
[
γ(XP)

]
− E

[
γ0(X

P)
]
+ E

[
γ(XS)

]
− E

[
γ0(X

S)
])

︸ ︷︷ ︸
Bias due to γ0

+

(
E
[
γ0(X

P)
]
− E

[
γ0(X

S)
])

︸ ︷︷ ︸
Shift in covariate distributions



2

This is analogous to a bias-variance decomposition. In practice, the first term is unobserved, since the oracle
weights are unknown. This means that we cannot optimize over this quantity. The feasible optimization
problem, given an arbitrary function γ0 then becomes:

min
S:||S||0 ≤K

1

P

P∑
s=1

(
E[γ0(XP)

]
− E

[
γ0(X

S)
])2

(2)

3.3 Minimizing the Bayes Risk of a Site Selection for the PATE

How should we choose a function γ0?
First note that we can interpret a particular choice of γ0 as minimizing the Bayes Risk of the site

selection procedure with respect to γ0. That is, we actually solve the following Bayesian risk minimization
problem:

min
S:||S||0 ≤K

∫
γ
MSEPATE(S; γ,X) dΛ(γ)

By placing a prior Λ on γ.

7



We consider the following choices of Λ. First, suppose we had data from a pilot study that allowed us
to estimate the relationship E[Y (0)|X]. Then, we could use as a plug-in estimate γ̂0. This is an empirical
Bayes strategy (Efron, 2010). We study this case in 8.1.

Second, in the absence of any information about the outcome model, it is sensible to place a uniform,
uninformative prior on the covariates X. This can be achieved by replacing γ0 with the identity function,
which is equivalent to multiplying covariates by the weight vector 1. Plugging this in gives us the following
feasible site selection problem for the PATE:
Problem 2 (Feasible Site Selection for the PATE)

min
S:||S||0 ≤K

1

P

P∑
s=1

(
E[XP ]− E[XS ]

)2
This simply picks the subset of size K that minimizes the observed difference in means between the

selected sites and the population.
The intuition here is that to choose sites that are best for the PATE, with no prior information about

the moderating effects of covariates, our best bet is to find a set of sites that most closely matches the
mean of the sites. This result is also discussed in Tipton and Mamakos (2023).

4 Site Selection for the CATE
We now consider the problem of selecting sites when heterogeneity is of interest. The argument in this
section is somewhat involved, so I preview its main conclusions here.

First, I show that selecting sites for the CATE can be represented as a discrepancy minimization
problem, in which we seek to chose a subset of sites S such that the distribution FS is as similar as
possible to the distribution of FP . Unlike in the previous section, we now seek to match all of the moments
of F between sample an population. Heuristically, this is a different solution set: we now want a set that
fully represents the population distribution, not just a set that represents the effect at the average. These
two goals may be incompatible in practice: a set of sites that is representative of the full distribution may
not be representative of the sites at the average, and vice versa.

I then show that we can solve this discrepancy minimization problem by minimizing the empirical
Weighted Quantile Discrepancy (WQD) between the selected sites and the population (Fan et al., 2022).
I show that minimizing the WQD2 (the `2 WQD) is asymptotically equivalent to minimizing the Mean
Squared Error of the CATE estimate as the quantile mesh over which the WQD is minimized becomes
increasingly fine-grained.

Importantly, the only assumption we place on the population distribution is that it is P -Donsker, which
is a very unrestrictive assumption in practice. This allows us to use empirical process theory to use a very
general nonparametric strategy to minimize the discrepancy between the distribution in the population
and the distribution of the selected subset (Kennedy, 2016; van der Vaart, 2000).

This motivates the objective functions which we shall use Best Subsets to solve in the next section.

4.1 A Feasible Site Selection Problem for the CATE

Consider the problem of minimizing the Mean Squared Error between treatment effects in the sample and
in the population. Using our previous definition, we can write the Researcher’s problem as follows:
Problem 3 (Researcher’s Problem: CATE)

min
S:||S||0 ≤K

∫
X
Es∼P

[(
Ei∼Ns [Yis(1)− Yis(0)|Xi = x]− Ei∼Ns [Yis(1)− Yis(0)|Xi = x, s ∈ S]

)2]
dx
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Proposition 2 (Infeasible Site Selection for the CATE)
The infeasible minimizer of Problem 3 is the minimizer of:

min
S:||S||0 ≤K

∫
X

(
γ(x)

[
fS(X = x)− fP(X = x)

] )2
dx

We follow the same approach discussed in the previous section. The feasible minimization problem
minimizes Bayes risk with respect to the degenerate prior γ0 = 1 is then:

Problem 4 (Feasible Site Selection Problem for the CATE)

min
S:||S||0 ≤K

∫
X
[fS(x)− fP(x)]2 dx

This is a discrepancy minimization problem: here, we want to minimize the distance between two
distributions, as opposed to two vectors of means (Banaszczyk, 1998; Bansal et al., 2017; Levy et al., 2017;
Bansal et al., 2022; Chazelle, 2000).

4.2 Using the empirical Weighted Quantile Discrepancy to select sites

In this subsection, I prove that we can use the empirical weighted quantile discrepancy to solve the feasible
site selection problem for the CATE. The idea is that, since empirical quantiles are good estimators of
underlying quantiles for a wide set of distributions (Lemma 1), the resulting empirical estimate of the true
approximation has error that disappears asymptotically as the number of quantiles increases (Lemma 2).
This means that the minimizer of the empirical weighted quantile discrepancy is asymptotically equivalent
to the minimizer of the MSE of the CATE Theorem 1.

First, define the Weighted Quantile Discrepancy (Fan et al., 2022). This is a nonparametric distance
measure that depends on the sum of the `p-norm distance between the quantiles of the two distributions.
Here, υ is a set of user-specified weights5, and ∆m defines a subinterval (m− 1,m] ⊂ [0, 1] of length 1/M :

Definition 5 (2-Weighted Quantile Discrepancy (WQD2))

WQD2[P, S,υ] =
M∑

m=1

υm||QP
m(x)−QS

m(x)||2∆m

Where υ is a weight vector.6 Intuitively, this gives us a discretized, nonparametric approximation to
the distance between two distributions. We can think of this as taking histograms of each distribution over
equally-sized quantile meshes, and summing the differences in mass at each quantile (Scott, 1992).

Our next technical lemma states that we can think of the WQD2 as a coarse approximation of the `2

risk described in Proposition 2.
As the resolution of the quantile mesh increases, the WQD2 converges to the squared distance between

distributions. Essentially, WQD2 measures the distance between coarse ‘histogram’ approximations of the
5In Section 8.2, I show that suitable choices of υ allows the researcher to assign greater weight to particular quantiles of the
distribution, and under some assumptions, particular subgroups. This is useful if we care about the effects of a given policy
in the lowest deciles of income, for instance.

6The idea is that user specified weights allow the researcher to estimate welfare effects: for instance, by choosing a rule like
υt = 1 if t < α, the researcher can consider treatment effects for the bottom αth quantiles of the distribution, assuming that
covariates are appropriately coded, and some prior knowledge of the direction of the effects of moderators. In what follows,
we take υt = 1T .
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distributions – as those ‘histograms’ become increasingly accurate approximations of the true underlying
distributions, so too the WQD2 becomes a more accurate measure of the squared distance of distributions.

Lemma 1 (Quantile Approximation of the `2 Risk)

WQD2[P, S,1]→
∫
X
[fS(x)− fP(x)]2 dx

.
The 2-Weighted Quantile Distance with uniform weights converges to the `2 risk as the quantile mesh length
goes to zero.

This result tells us that the 2-Weighted Quantile Discrepancy is asymptotically equivalent to the `-2
risk, as our quantile approximation of the CDF of X becomes increasingly fine-grained.

Now we want a guarantee on the behaviour of an empirical plug-in estimate of the WQD. This allows
us to use the 2-WQD as the basis of our minimization procedure in the next section.

The empirical quantile function, Q̂t(x) = inf
x
{x : F̂ (x) ≥ t}, is a natural plug-in estimator for the

quantile function above. It is straightforward to show the convergence of empirical quantile functions to
true quantile functions using arguments from empirical process theory, which is a powerful set of tools for
demonstrating the convergence of (functionals of) empirical distribution functions (van der Vaart, 2000;
Kennedy, 2016).

First, we require the following technical assumption:

Assumption 3
Suppose FP belongs to a class F of measurable functions with finite bracketing integrals.7 Then, FP is
P-Donsker.

This limits the set of possible distributions of the covariates to a large set of possible distributions.
For instance, distributions belong to an exponential family, Lipschitz functions, and functions with finite
Vapik-Chervonekis dimension are P -Donsker.

Lemma 2 (Weak Convergence of Empirical Weighted Quantile Discrepancy)
Let Q̂ be the empirical quantile function, and consider the empirical Weighted Quantile Discrepancy
ŴQD

2
=
∑T

t=1 υt||Q̂P
t (x) − Q̂S

t (x)||2 ∆t. Then, by 3, the empirical Weighted Quantile Discrepancy con-
verges weakly to the Weighted Quantile Discrepancy.

This confirms the basic intuition that the empirical quantile function is a valid plug-in estimator for
the true quantiles (and hence, for the Weighted Quantile Discrepancy).

We are now able to state our main result for this section, which is that the minimizer of the empirical
Weighted Quantile Discrepancy with respect to a site selection of cardinality K weakly converges to the
feasible minimizer of MSECATE(S;X).

Theorem 1 (Minimizing the empirical WQD2 minimizes MSECATE)

argmin
S:||S||0 ≤K

lim
||∆m||→0
M→∞

ŴQD
2
[P, S,1] = argmin

S:||S||0 ≤K
MSECATE(S;X)

Theorem 1 shows that choosing a subset that minimizes the empirical 2-Weighted Quantile Discrepancy
is asymptotically equivalent to choosing a subset that minimizes the MSE of the CATE. Further, it does

7A function f ∈ F has a finite bracketing integral if...
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so for a wide class of distribution functions: we require only that the distribution function is P-Donsker,
which is an unrestrictive assumption.

This result motivates our use of the empirical 2-Weighted Quantile Discrepancy as a minimand in
practice.

In Appendix A.4, I discuss the connection between the problem of minimizing the 2-Weighted Quantile
Discrepancy and minimizing the Wasserstein Distance.

5 Using Best Subsets To Select Sites
The previous section considered what to minimize. In this section I describe how to minimize it.

I first briefly outline the Best Subset Selection Problem, its computational complexity, and recent
work by Bertsimas et al. (2015b) that has made it possible to find solutions to the problem with provable
optimality in a ‘reasonable’ computational time frame in the n < p regime. I then show how to use Best
Subsets to find solutions to the feasible minimization problems described in the previous section.

5.1 Best Subsets: A Brief History

Originally known as the variable selection problem, the classical Best Subset Selection Problem in statistics
and machine learning is the problem of choosing a finite subset of predictors that best explain the outcome
in a regression model (Hocking and Leslie, 1967; Beale et al., 1967; Breiman, 1995; Miller, 2002; James
et al., 2021; Thompson, 2022). This is modelled as the optimization problem:

Problem 5 (Best Subset Selection Problem)

min
β

1

2

n∑
i=1

Yi −
J∑

j=1

Xijβj

2

s.t. ||β||0 ≤ K

Where J is the dimension of the covariates, K is an integer in (0,min{n − 1, J}). Best subsets has
the attractive feature of imposing a K-sparse solution – that is, one in which exactly K coefficients are
non-zero – on the regression problem.

Until recently, however, provably optimal solutions to this problem were generally computationally
infeasible. This is because best subset selection is nonconvex and NP-hard (Natarajan, 1995), since there
are generally

(
J
K

)
models to search through. This grows combinatorically: a brute force approach to

selecting 10 variables from 50 possible covariates would require evaluating empirical losses of ≈ 1010

models. The implementation leaps, based on a branch-and-bound technique, is infeasible for problems of
size p ≥ 30 (Furnival and Wilson, 1974). Greedy methods based on heuristics, such as stepwise search, are
not guaranteed to find optimal solutions.

Best Subsets, however, is considered to have some attractive theoretical properties over LASSO and
Ridge Regression, two close alternatives that represent convex relaxations of Problem 5: that is, where the
the nonconvex cardinality constraint that β is K-sparse is replaced with a convex penality on the `1 or
`2 norm of β. Zhang et al. (2014) shows that, under a restricted eigenvalue condition, Best Subsets has
lower variance than LASSO; Bertsimas et al. (2015b) highlight the superior empirical performance of Best
Subsets. Finally, optimality guarantees ensure consistency of the algorithm.

5.2 Best Subsets: Bertsimas et al.

Bertsimas et al. (2015b) use advances in Mixed Integer Optimization to develop an algorithm to implement
best subsets with provably optimal solutions in the N < P regime, and short runtimes. The empirical
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performance of this method is studied by Hastie et al. (2020), who find that it generally outperforms the
lasso in high signal-to-noise regimes. Two packages to implement best subsets using MIO solvers in R,
Best Subsets and rss have been developed by Hastie et al. (2020) and Thompson (2022).

Let HK be the hard thresholding operator, which sets all but the K largest elements of a vector to zero
(Donoho and Johnstone, 1994). The hard-thresholding operator. For a vector X = {X1, . . . , Xn} take the
ordered vector {X(1), . . . , X(n)}. Then, for K < n, HK(X) = {X(1), . . . , X(K), 0, . . . , 0}.

Then, the Algorithm of Bertsimas et al. (2015b) solves the following problem:

Problem 6

min
β

||Y −X ′β||2

s.t. ||β||0≤ K

||β||∞≤MU , ||β||1≤M`

||X ′β||∞≤MXβ
U , ||X ′β||1≤MXβ

`

We note that the bounds {MU ,M`,M
Xβ
U ,MXβ

` } do not affect the theoretical optimality of the proce-
dure, since they can be estimated from data with provable optimality. It is also possible to write out the
objective function without explicit reference to these bounds, though the above formulation is preferable
for purposes of exposition.

Algorithm 1: Best Subsets: Bertsimas, King and Mazumder (2016)
1 function Best_Subsets (Y , X, K, λ, ε)

Input : Outcome Y , Matrix of predictors X, Subset size K, Learning rate λ, Tolerance ε
Output: Selected site indicators Ŝ

2 Initialize β1 such that ||β1||0 ≤ K # Choose initial vector of weights from warm-start.
3 for m ≥ 1 do
4 Calculate L(βm) =

∑n
i=1(Yi −X ′βm)2 # Evaluate loss of weights.

5 Calculate βm+1 ∈ Hk

(
βm −

1

λ
∇L(βm)

)
# Hard-threshold gradient update step.

6 if L(βm)− L(βm+1) > ε then
7 Continue # Continue until convergence threshold reached.
8 else
9 Ŝ← [I{βm1 6= 0}, . . . , I{βms 6= 0}] # When converged, store optimal support.

10 end
11 end
12 β∗ ← argmin

β: Support(β)=Ŝ

||Y −X ′β||2 # Solve original problem over selected support.

13 Return β∗

Algorithm 1 is an example of projected gradient descent (Nesterov, 2004, 2012). It does gradient descent
over coefficients, then hard-thresholds the losses: that is, it deletes all but the top-K coeffieicnts, or projects
onto the set of K-sparse solutions.

Notice that the goal is to first learn the K-sparse support of β – that is, which covariates to include –
then to solve the minimization problem, given the solution to which covariates to include. In the case of
linear regression, the goal is to choose variables, then run a regression on the selected variables.
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This algorithm converges to provably optimal solutions in the n < p regime, and has guarantees on its
suboptimality in the p > n regime. Further detail on this method is contained in Section 9.5.

5.3 Using Best Subsets to Solve The Site Selection Problem

In order to use Best Subsets to solve the feasible site selection problems for the PATE and the CATE, we
first need to write out an objective function that has the form of Problem 6.

Whereas Best Subsets is usually applied to a data structure that is N × J , we here apply it to a data
structure that is J×S. That is, we treat sites as predictors, and statistics of the covariates as our outcome.
The goal is to pick the K sites that best predict features of the covariate distribution.

In this section, we suppose that the observed set of sites is the true finite population of sites. We do
this by picking sites that match statistics of the observed covariate data as closely as possible, for some
set of weights with K-nonzero entries. The idea is to reweight sites so that they match statistics of the full
observed population.

We use Algorithm 1 to solve a problem of the following form:

Problem 7 (Using Best Subsets To Select Sites)

min
w

J∑
j=1

(
T (Xjs)−

P∑
s=1

X ′
jsws

)2
s.t. ||w||0≤ K

Where T : XJ×S → RJ is a statistic that transforms the J × S matrix X into a real-valued vector of
length J .

This allows us to select a K-sparse vector of weights that chooses a set of sites Ŝ that minimize the `-2
distance between the selected subset and the statistic in the full sample. Recall that Algorithm 1 produces
an active set Ŝ, which tells us which covariate entries should be non-zero. Since we have ‘rotated’ our data
structure, this set now tells us which sites should be given non-zero weight. In other words, a K-sparse
solution to this site selection problem, it is therefore straightforward to extract the set of sites that ‘best’
predicted statistics of the covariates. These are the sites that solve the discrepancy minimization problems
described above, up to a set of weights w.

Note that, in this setting, we are not actually interested in the vector of weights. We are instead just
interested in which weights are non-zero: these tell us which sites to include.

5.4 Best Subsets for the PATE

To solve Problem 2, we want to minimize the distance between covariate vectors in the population and the
selected sample at the average.

We implement the following estimation problem using Best Subsets:

min
w

1

2

J∑
j=1

(X̄j −X ′
jw)2 s.t. ||w||0 ≤ K (3)

Note that we no longer explicitly constrain the cardinality of the set S: instead, the weight vector w
is forced to be K-sparse, which induces K-sparsity of the set S. Second, the weights themselves are not
meaningful in this problem: we are only interested in the variables that are in fact selected by the model.

While the above minimizes the distance at the mean, we can also implement the following minimization
problem, using the median as a Huber-robust estimator of the mean (Huber, 1981):
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min
w

1

2

J∑
j=1

(median(Xj)−X ′
jw)2 s.t. ||w||0 ≤ K (4)

5.5 Best Subsets for the CATE

Minimizing the empirical WQD in practice entails minimizing the following objective function:

Problem 8 (Objective Function for the CATE)

min
w

1

2

T∑
t=1

J∑
j=1

(Q̂t(Xj)−X ′
jw)

2 s.t. ||w||0 ≤ K

This is recognizable as a K-quantiles problem (Hennig et al., 2019): the goal is to choose a set that
minimizes the distance between each of the quantiles of the covariates in the selected subset and in the
population.

A practical difficulty in implementing this is that we now have a matrix of outcomes Q̂T×J . This
is the set of quantiles for each covariate over a quantile partition of size T . We can think of this as a
J-dimensional histogram estimate of the distribution function of X. Our solution to this problem is to use
Weighted Majority Voting, which we discuss in the next section.

5.6 Convergence of Algorithm 1

We want to show that Algorithm 1 does, in fact, yield the correct site selection.
The argument is a straightforward application of the theoretical optimality of Algorithm 1 to the site

selection problems outlined in the previous sections. This is established in Theorem 3.1 of Bertsimas et al.
(2015b). Since this result is not mine, I direct the reader to the proof in the original paper, and state the
result below.

Theorem 2 (Bertsimas et al. (2015b), Theorem 3.1)
For an optimization problem:

min
w

`(w;Y ) s.t. ||w||0≤ K

Where `(w) ≥ 0 is convex and has Lipschitz continuous gradient so that:

||∇`(w;Y )−∇`(w̃;Y )|| ≤ L||w − w̃||
Defining a learning rate λ > L, and let w∗ be a solution to the optimization problem above. Then, after

B iterations, Algorithm 1 satisfies:

min
b∈B
||w(b+1) −w(b)||≤ 2[`(w(1))− `(w∗)]

M(λ− L)

Where `(w(b))↘ `(w∗) as b→∞.

It is straightforward to apply this result to the objective functions described by Equation (4) and
Problem 8 above.

Corollary 1
Take Y to be T (X) = X̄, and Q̂t(X), respectively. Then Algorithm 1 converges to the minimizers of
Equation (4) and Problem 8 respectively.
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6 Best Subsets Ensemble with Weighted Majority Voting
Our goal in this section is to develop an ensemble method with improved out-of-sample performance.
Ensemble methods, in which the predictions from a base leaner are aggregated to form a final prediction,
are a popular tool in machine learning and causal inference that are increasingly used in the social sciences
(Zhou, 2012; Montgomery et al., 2012; Samii et al., 2016; Grimmer et al., 2017; Künzel et al., 2019; Grimmer
et al., 2021; Athey et al., 2019).

6.1 Motivation: Improving Generalization

In the previous section, we assumed that we observed the full population of sites, and described a method
to select sites that minimize an observed loss criterion over that population. In many possible applications,
however, we observe only a subset of sites from a larger population. That is, we have the following nested
structure of sets:

S ⊂ P sub ⊂ P

Where we observe a subpopulation P sub from a larger unobserved population P. This relates to the
case where we observe a sample of sites from a given population, from which we must select a subset.
In this case, we may be interested in selecting sites that are representative of the full, partially observed
population, and not the observed subpopulation. This problem can be formalized as one of external validity,
or distribution shift, where we wish to extrapolate from a distribution FP to a distribution F P̃

The classic best subsets problem was the focus of much early ensemble research, due to the computa-
tional intractability of finding exact solutions (Breiman, 1995, 1996). Here, we use ensemble methods as
a form of implicit regularization: to prevent overfitting to observed data, and thereby to improve gener-
alization performance. The approach is broadly inspired by the Weighted Majority Voting algorithm of
Littlestone and Warmuth (1994).

We use Monte Carlo Cross-Validation to repeatedly fit Best Subsets models. The general idea is to
generate many test-training sample splits, generate site selections for each training set, and evaluate them
on our hold out testing set. We then take the observed empirical loss on the testing set, and use this to
determine each submodel’s contribution to the overall prediction of which sites to use.

The goal is to build robustness to endogenous distribution shifts observed in the data: instead of
solving the site selection problem once, we induce distribution shifts by solving the site selection problem
for subsets of the data, and then assessing the ability of that prediction to generalize to unseen data. At
each iteration, we draw a new test-training split, in which we train the model on τ% of the data and test
it on 100− τ%. By default, we set τ = 90.

6.2 Aggregation by Weighted Majority Voting

Formally, let Ŝ(b) be the prediction of a Best Subsets procedure at an iteration b ∈ B, let β(b) be a weight
vector. Let ` : X , θ → R be a loss function, ˆ̀(X, Ŝ) be the observed empirical loss on our selected sites.
Recall the hard-thresholding operator HK as defined previously.

Our final site selection is a weighted ensemble of a site selections generated from individual iterations
of Algorithm 1. That is, we have the aggregated site selection:

Ŝ = HK

[∑
b∈B

β(b)Ŝ(b)

]
This is a Weighted Majority algorithm (Littlestone and Warmuth, 1994; Cesa-Bianchi and Lugosi, 2006).

Then ‘voting’ weights are defined as follows:
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β(b)
s =

e−`(X
(b)
test,Ŝ

(b)) If site s is selected at iteration b

0 If site s is not selected at iteration b

Which is a normalization of the empirical loss: larger losses mean that the contribution of that model
to the eventual prediction is smaller. Weight is zero for any site that is not selected; and is larger when
the empirical loss is smaller.

We use a loss function that balances: minimization of both the overall discrepancy between the test
set and its selected subset; and on specific quantiles of the test set. This is intended to ensure good
performance both overall and with respect to the specific quantile prediction task.

This motivates our loss function, for a given quantile t:

ˆ̀(X, Ŝ) = Ŵ1[Q̂t(X
test), Q̂t(X

test(Ŝ))]

Where Ŵ1 is the empirical Wasserstein distance.

6.3 Algorithms

We set t = .5 (i.e. the median) when selecting sites for the PATE, and iterate over a grid of quantiles when
selecting sites for the CATE. We use the median in place of the mean, as it is a Huber-robust estimator
of the mean (Huber, 1981). In this way, Algorithm 2 is a special case of Algorithm 3, evaluated at one
quantile.

The CATE algorithm is a ‘winner-of-winners’ procedure: Each iteration generates a ‘local’ K-sparse
solution, and then the performance of each solution is aggregated to yield a ‘global’ K-sparse solution.
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Algorithm 2: Best Subsets Ensemble for the PATE

1 function BSE_PATE (X, T (X) = median(X), K, B)

Input : Matrix of predictors X, Statistic T (X), Subset size K, Iterations B

Output: Selected site indicators Ŝ

2 Split X into B test-train folds.

3 for b ∈ B do

4 Ŝ(b) = Best_Subsets(T (X(b)
train), X

(b)
train, K) # Apply Algorithm 1

5 `(X
(b)
test, Ŝ

(b))← Ŵ1[Q̂.5(X
test), Q̂.5(X

test(Ŝ))] # Evaluate holdout loss

6 β
(b)
s ←


e−`(X

(b)
test,Ŝ

(b)) s ∈ Ŝ(b)

0 o.w

# Use loss to construct voting weight

7 end

8 β
(b)
s ←

β
(b)
s

(KB)−1
∑

s∈P
∑

b∈B β
(b)
s

# Normalize losses

9 β̂K ← HK

[{∑
b∈B β

(b)
s

}S

s=1

]
# Aggregate votes, select K winners

10 Ŝ ←
(
I{β̂K

s 6= 0}
)S
s=1

# Select sites corresponding to K largest votes

11 Return Ŝ # Output site selection
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Algorithm 3: Best Subsets Ensemble for the CATE

1 function BSE_CATE (X, T , K, B)

Input : Matrix of site characteristics X, Vector of quantiles T , Subset size K, Iterations B

Output: Selected site indicators Ŝ

2 Split X into B test-train folds.

3 for b ∈ B do

4 for t ∈ T do

5 Ŝ
(b)
t ← Best_Subsets(X(b)

train, Q̂t(X), K)

6 `(X
(b)
test, Ŝ

(b)
t )← Ŵ1[Q̂t(X

test), Q̂t(X
test(Ŝ))]

7 β
(b)
st ←


e−`(X

(b)
test,Ŝ

(b)) s ∈ Ŝ
(b)
t

0 o.w.

8 end

9 β
(b)
st ←

β
(b)
st

(KT )−1
∑

t∈T
∑

b∈B β
(b)
st

10 β
(b)
s ← HK

[{∑
t∈T β

(b)
st

}S

s=1

]
11 end

12 β
(b)
s ←

β
(b)
s

(KB)−1
∑

s∈P
∑

b∈B β
(b)
s

13 β̂K ← HK

[{∑
b∈B β

(b)
s

}S

s=1

]
14 Ŝ ←

(
I{β̂K

s 6= 0}
)S
s=1

15 Return Ŝ

6.4 Properties of Algorithms 2 and 3

Algorithms 2 and 3 are closely related to the ‘Super Learner’ approach of van der Laan et al. (2007);
Grimmer et al. (2017). Cross-validation benefits from finite sample and asymptotic performance guarantees
described in Dudoit and van der Laan (2005). The asymptotic consistency of weighted majority voting
is studied in Berend and Kontorovich (2014); Cesa-Bianchi and Lugosi (2006). I study the empirical
performance of Algorithms 2 and 3 in the next section.
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7 Empirical Application: Auerbach and Thachil, 2018
The goal is to assess both in-sample performance and out-of-sample performance. That is, how well the
selected sites describe the observed covariate data, under the assumption of no unobserved moderators;
and how well the sites describe unobserved sites. Out-of-sample performance gives us some sense of how
well the observed sites generalize to unseen examples.

Throughout, we compare the performance of our model selection tool to a the Synthetic Purposive
Sampling (SPS) method proposed by Egami and Lee (2024). I also calculate an infeasible oracle estimate,
based on unobserved, synthetic treatment effects, generated under a linear model.

7.1 Settlements: Auerbach and Thachil, 2018

Figure 1: Bhopal Figure 2: Jaipur

I design a naturalistic simulation study, based on Auerbach and Thachil (2018), who conducted a conjoint
experiment across a sample of 110 informal urban settlements in Bhopal and Jaipur, India. Their goal was
to study resident preferences for political brokers, whose role is to create linkages between political parties
and local voters. A main finding from their paper is that residents were around 13.3% more likely to
prefer a broker with a bachelor’s degree, which Auerbach and Thachil interpret as a measure of a broker’s
capability to extract resources from the governing party.

This setting is a good test of our method for several reasons. First, the authors measured a variety of
settlement-level covariates, some of which are predictive of the outcome. This allows us to generate syn-
thetic treatment effects as a function of observed covariates to use as the ‘ground truth’ in our simulation.
Second, because the authors conducted a study in 110 settlements, we have a large and well-defined study
population. We can then partition this population into an observed subpopulation, and an unobserved
larger population, to assess how well the sites selected in the subpopulation represent sites the unobserved
larger population. This creates a naturalistic case study of distribution shift: covariate values will nec-
essarily shift across selections into site. It is plausible that we observe both sampling uncertainty and
distributional uncertainty across both contexts (Rothenhäusler and Bühlmann, 2023).
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7.2 Simulation approach

The simulation is structured as follows:

1. Denote the set of all sites as our population, P.

2. Generate ITEs using individual-level covariate data, and treat these ITEs as the ground truth. This
gives us both the PATE and the CATE.
For i ∈ I:

3. Randomly sample a subpopulation of sites P(i) ⊂ P. This is taken to be the population of
interest, for which the analyst observes aggregated site-level covariate data.

4. Use a site selection method to select a subset of K sites from the subpopulation P(i)

5. a) CATE loss: Record the empirical 1-Wasserstein distance between:
· In-sample loss: The (unobserved) distribution of ITEs in the subpopulation and the

distribution of ITEs in the selected sample.
· Out-of-sample loss The (unobserved) distribution of ITEs in the population and the

distribution of ITEs in the selected sample.
b) PATE loss: Record the empirical 1-Wasserstein distance between:

· In-sample loss: The (unobserved) distribution of SATEs in the subpopulation and the
distribution of SATEs in the selected sample.

· Out-of-sample loss The (unobserved) distribution of SATEs in the population and the
distribution of SATEs in the selected sample.

c) Oracle loss: By brute force search, find the site selection that minimizes each of the
above losses with respect to the unobserved distribution of synthetic treatment effects. This
procedure is infeasible in general because treatment effects are not observed, units outside
the population are not observed, and brute force search is computationally infeasible for
larger sample sizes.

6. Aggregate losses across all iterations.
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7.3 Results
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Table 1: Simulation Results, Auerbach and Thachil (2018)

SPS Best Subsets Ensemble

PATE (In-sample) 0.01576215 0.01508495
PATE (Out-of-Sample) 0.02469087 0.02217600
CATE (In-sample) 0.01573571 0.01396278
CATE (Out-of-Sample) 0.02332683 0.02228081

The proposed method has better average performance when estimating the PATE and the CATE; and
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in both in-sample and out-of-sample contexts, compared to Synthetic Purposive Sampling.
In Appendix A.2, we assess the performance of the method using synthetic treatment effect data in

Hill (2011) and Louizos et al. (2017). My method also outperforms SPS in average case performance in
these simulation studies.

8 Extensions: Incorporating Prior Information

8.1 Prior Information About Pretreatment Outcomes

So far, we have assumed that Researchers do not observe outcome data. In the absence of any information
about the model of treatment effects, we have minimized unweighted covariates.

We now consider the case where the Researcher observes pretreatment outcomes for a sample of units.
That is, we suppose they observe a sample {Yi(0), Xi}Ni=1 drawn at random from the population. We
assume that the Contextual Exclusion Restriction holds also for this sample, so that this sample contains
no site-specific information.

From this sample, we can form a provisional estimate of the weights on X in the true outcome model:

γ̂ = argmin
γ

N∑
i=1

(
Yi(0)−X ′

iγ
)2

We can then use these weights γ̂ as a plug-in estimate of the weights in the infeasible site selection
problems above.

This gives us two new optimization problems:

Problem 9 (Site Selection for the PATE with Pilot Data)

min
S : ||S||0≤K

E
[
γ̂(XS −XP)

]
Problem 10 (Site Selection for the CATE with Pilot Data)

min
S : ||S||0≤K

∫ [
fS(γ̂′x)− fP(γ̂′x)

]2
dx

And their corresponding objective functions:

min
w

J∑
j=1

(
γ̂jXj − (γ̂jXj)

′w
)2 s.t. ||w||0 ≤ K

min
w

T∑
t=1

J∑
j=1

(
Q̂t(γ̂jXj)− (γ̂jXj)

′w
)2

s.t. ||w||0 ≤ K

8.2 Prior Information About Welfare

We now consider the case where a Researcher is interested in selecting sites that are optimal for a welfare-
weighted treatment effect. In particular, we consider the problem of using user-specified weights to difer-
entially weight quantiles of treatment effect moderators.

The user-weighted Quantile Discrepancy, for user weights υ = {υtj}(T )
(t=1), is:
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WQD2(P, S,υ) =
T∑
t=1

J∑
j=1

υt||Q̂t(Xk)−X ′
jw||2 s.t. ||w||0≤ K

Plugging this into the objective function for the CATE, above, gives us the user-weighted minimization
problem:

min
w

1

2

T∑
t=1

J∑
j=1

υt

(
Q̂t(Xk)−X ′

jw
)2

s.t. ||w||0≤ K

This is equivalent to solving the following minimization problem:

Problem 11 (Site Selection for the CATE with Welfare Weights)

min
S : ||S||0≤K

∫ [
υ ◦ fS(x)− υ ◦ fP(x)

]2
dx

Where υ ◦ f represents a transformation of the distribution of f .

8.2.1 Example: α-Lexicographic Welfare Weighting

Consider the following example. Let:

υt =

{
1 if t < α

0 o.w.

Then υ ◦f is the truncation of f at the αth quantile, and solving Problem 11 selects sites that minimize
the discrepancy between the distributions at the lowest α% of covariate values marginally.

Suppose individual pretreatment outcomes demonstrate increasing differences with respect to covariates
(Milgrom and Shannon, 1994), so that:

Assumption 4 (Increasing pretreatment differences)

x′
i � xi =⇒ Yi(0|x′) ≥ Yi(0|x)

This is a reasonable assumption in many policy evaluation contexts: for instance, we may think that
pretreatment health status or education attainment increase monotonically in household socioeconomic
characteristics.

Then, under increasing pretreatment differences, the α-truncated distribution represents the lowest
α-quantiles of welfare in the population. Problem 11 then selects sites based on the units with lowest
pre-treatment welfare.

Truncation of f represents weighting based on an α-lexicographic welfare criterion (Dickerson et al.,
2014): that is, we find sites that minimize the site selection risk at the lowest α-quantiles of the distribution.

8.3 Prior Information About Variances: Shrinkage and Neyman-type Allocation

So far we have assumed that we observe only a matrix of covariate mean values in the population. We now
consider the case where we also have some information about site-specific covariate variances. This could
be the case where we have census information about a set of unit-level covariates, such that we believe this
information to both prognostic with respect to treatment effects, and to vary within sites.

Neyman Allocation of groups is the procedure by which selection probabilities are proportional to the
variance of the characteristic in the group (Neyman, 1934; Zhao, 2023). The idea is that we want more
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weight assigned to groups with larger within-variances: they are more likely to include relevant population
values, as well as comprising greater shares of the population as a whole.

We propose a Neyman-type procedure to incorporate information about variances into the above site
selection problems.

Suppose we observe a matrix of population variances, and site sample sizes {ns, σ̂js}(J,P)
(j=1,s=1). This

information is new: we observed only site-level covariate means, previously, and standardized covariates
across sites.

Define:

ζ̂js =
nsσ̂

2
js∑P

s=1 nsσ̂2
js

This “shrinkage factor” normalizes the variance of covariate j in site s relative to the variance of
covariate j in all other sites s. For instance, if the variance in site s is much larger than the variance of all
of other sites, ζ̂js → 1, while ζ̂j_s → 0 for all other sites _s.

This allows us to weight our objective function by the relative precision of estimates in site s. The
idea is that sites with larger variance or larger sample sizes should be given more weight in our objective
function: they are more likely to be internally diverse, which is useful for both PATE and CATE estimation.

We can rewrite our objective functions as follows:

min
w

J∑
j=1

(
T (ζ̂jsXjs)−

P∑
s=1

(ζ̂jsXjs)
′ws

)2

s.t. ||w||0 ≤ K (5)

This is a shrinkage estimator, because it shrinks the weights on sites with smaller variances towards
zero (Rosenman and Miratrix, 2022). As Tipton and Mamakos (2023) point out, in order to minimize
variance with respect to the CATE, we want to both minimize the discrepancy of the two distributions,
and select sites that are as heterogeneous as possible.

9 Discussion

9.1 Other Applications

While the above method is designed for the case of selecting a fixed number of experimental sites from
a well-defined population, with studies in political science in mind, a number of other causal inference
problems can be recast as discrepancy minimization problems where we want to select a subset that solves
an optimization problem. We note the possibility of applying the above methods to three additional cases:

• Individual-level data. The most straightforward setting is one in which we wish to experiment on
a subset of units. This setting is studied in Addanki et al. (2022). Here, we wish to minimize error
with respect to included units i rather than sites s.

• Treatment assignment The problem of choosing two treatment assignment vectors that balance
covariate distributions across two samples is a discrepancy minimization problem (Hainmueller, 2012;
Ben-Michael et al., 2021).

• Cluster Randomization We can also use the shrinkage estimator proposed in the previous section
to assign treatment incorporating both information about covariates and knowledge of cluster-specific
variances.
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9.2 When Should You Use This Method?

9.2.1 When Covariates Are Informative

If covariates are uninformative about potential outcomes, there is little point in using an optimization
procedure to pick sites. Further, if relevant moderators of treatment effects are excluded

This is not a new point, as was stated by Bowley in 1926, in the earliest work on purposive sampling.
Bowley wrote that the question of practical importance was “how far the precision of the measurements
[here, of τ ] is increased by correlation [of X and τ ]”.

9.2.2 When K Is Much Smaller Than P

The performance gap between randomization and optimization has been studied by (Bertsimas et al.,
2015a; Kallus, 2018).

Randomization has worse performance when we must select a small number of units from a large po-
tential population. When both S and K are large, there may be relatively little precision to be gained
from purposive selection rather than random sampling, a point made by Neyman (1934). Random sam-
pling guarantees representativeness asymptotically, so as K approaches S, and as S approaches ∞, the
performance gap between random sampling and purposive site selection decreases.

9.2.3 When Between-Site Variance Is Large

When sites have high between-site variation and low within-site variation, randomization can perform this
well. Here the ‘risk’ of a bad sample is larger, because the randomly selected sites can be further from the
median; or closer together.

This is analogous to the argument is made by Pashley and Miratrix (2022) in the case of blocking:
blocking improves inference, relative to complete randomization, when sites are heterogeneous, but have
relatively little within-site variation.

9.3 Selective Inference

One concern raised at the use optimization procedures in experimental design is that the Researcher risks
‘selecting on the dependent variable’ (Geddes, 1990). Interest in selective inference has grown significantly
over the last decade (Kuchibhotla et al., 2022), especially in the context of machine learning tools that
reuse data to compare multiple models (Fithian et al., 2017).

The nature of the optimization objective matters, however. To allay selective inference concerns, what
is important is that treatment assignment is independent of site selection. Because the experimental design
proceeds in two stages: first select sites, then randomize units within site, the consistency of treatment
effect estimation is independent of the site selection procedure. It is possible to have a purposive selection
model and valid inference for treatment effect estimates. To put it another way, an optimization-based
procedure can only make it more likely to discover a true treatment effect, given that there is in fact a
treatment effect. It cannot make it more likely to discover a true treatment effect given that there is no
treatment effect.

9.4 The Price of Robustness: Representativeness Versus Generalizability

Interestingly, site selection objectives for the CATE and for the PATE are distinct. For the PATE, we
want to match sample means as closely as possible, while for the CATE, we want to match the whole
distribution as closely as possible. Since these are different objectives, a solution that is optimal for one
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is not necessarily optimal for the other; this is known as the price of robustness in Operations Research
(Bertsimas and Sim, 2004).

This result has a clear substantive interpretation for the applied researcher: for the PATE, we want to
find bellweathers – sites that are as representative as possible of the population at the average.

Note that this conclusion differs from conventional wisdom around study selection, in which it is
suggested to diversify a selected sample as much as possible. Diversification may be useful if one is
interested in the external validity or robustness of an estimate, or in learning about the CATE. But if the
goal is to assess the PATE as accurately as possible, diversification may be worse from a Mean Squared
Error perspective than selected sites closest to the average. This is an example of what is known in
operations research as the price of robustness (Bertsimas and Sim, 2004). In the social sciences, this is
sometimes colloquially referred to as ‘the trade off between internal and external validity’.

9.5 Conclusions

I propose a set of novel methods for selecting experimental sites based on observable covariate data based
around using Best Subsets. I apply these methods to selecting sites optimal for the PATE, and for the
CATE. I develop an ensemble method intended to improve generalization performance when out-of-sample
loss minimization is of interest. I show how to incorporate three kinds of prior information into the site
selection problem of interest: pre-treatment outcomes, welfare weights, and variances.

I show that this method has better average case performance than existing alternative methods. I
note that it can be applied to a range of other problems where the analyst seeks to solve a discrepancy
minimization problem subject to a cardinality constraint, and describe the situations in which our method
should be expected to perform better than randomization. Randomization is preferable when the number of
selected sites is large, so that asymptotic approximations are likely to be good approximations. Purposive
selection is preferable when we have prognostic covariates, can conduct experiments in only a small number
of sites, and when sites have significant between-variance. Since this well describes common political science
contexts, there is ample scope for adoption of this and related methods in cases where we can ‘do better’
than randomization.
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Appendix

A.1: Proofs of Results

Proof of Proposition 1

Proof.

min
S:||S||0 ≤K

Es∼P

[(
Ei∼P [Yis(1)− Yis(0)]− Ei∼P [Yis(1)− Yis(0)|s ∈ S]

)2]
= min

S:||S||0 ≤K
Es∼P

[(
Ei∼P [τis]− Ei∼P [τis|s ∈ S]

)2]
= min

S:||S||0 ≤K

1

P

P∑
s=1

(
Ei∼P [τis]− Ei∼P [τis|s ∈ S]

)2
= min

S:||S||0 ≤K

1

P

P∑
s=1

(
EX

[
Ei∼P [τis|X = x]

∣∣∣Xi = xi

]
− EX

[
Ei∼P [τis|X = x, s ∈ S]

∣∣∣Xi = xi

])2
= min

S:||S||0 ≤K

1

P

P∑
s=1

(∫ [∫
τisf(τis|X = x) di

]
fP (X = x) dx−

∫ [∫
τif(τi|X = x) di

]
fS(X = x) dx

)2

= min
S:||S||0 ≤K

1

P

P∑
s=1

(∫
E[τis|X = x]fP (X = x) dx−

∫
E[τis|X = x]fS(X = x) dx

)2

= min
S:||S||0 ≤K

1

P

P∑
s=1

(∫
γ(x)fP (X = x) dx−

∫
γ(x)fS(X = x) dx

)2

= min
S:||S||0 ≤K

1

P

P∑
s=1

(
E[γ(XP)

]
− E

[
γ(XS)

])2

Proof of Proposition 2

Proof.

min
S:||S||0 ≤K

MSECATE(S;X)

= min
S:||S||0 ≤K

∫
X

(
E[τ |X = x, s ∈ S]− E[τ |X = x, s ∈ P]

)2
dx

= min
S:||S||0 ≤K

∫
X

(
τS(x)− τP(x)

)2
dx

= min
S:||S||0 ≤K

∫
X

(
τ(x)fS(x)− τ(x)fP(x)

)2
dx

= min
S:||S||0 ≤K

∫
X

(
τ(x)[fS(x)− fP(x)]

)2
dx
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Proof of Lemma 1

Proof. Consider the WQD2[P, S] with uniform weights. We write the ‘coarse’ quantiles associated with a
mesh M as Q̃m. Then, for any quantile mesh with ||∆m||= 1/M , we have the following:∫
X
[fP(x)− fS(x)]2 dx =

∫ 1

0
||QP

t (x)−QS
t (x)||2 dt

=
M∑

m=0

||Q̃P
m(x)− Q̃S

m(x)||2 ∆m +

(
M∑

m=1

∫ m

m−1
||QP

t (x)−QS
t (x)||−||Q̃P

m(x)− Q̃S
m(x)||2 ∆m dt

)

= WQD2[P, S,1] +

(
M∑

m=1

∫ m

m−1
||QP

t (x)−QS
t (x)||2−||Q̃P

m(x)− Q̃S
m(x)||2 ∆m dt

)
︸ ︷︷ ︸

Quantization error / Approximation error

Where:

lim
||∆m||→0
M→∞

(
M∑

m=1

∫ m

m−1
||QP

t (x)−QS
t (x)||2−||Q̃P

m(x)− Q̃S
m(x)||2∆m dt

)

=

∫ 1

0
||QP

t (x)−QS
t (x)||2−||QP

t (x)−QS
t (x)||2 dt = 0

So that:
lim

||∆m||→0
M→∞

WQD2[P, S,1] =
∫
X
[fS(x)− fP(x)]2 dx

.

Proof of Lemma 2

Proof. Since FP is P -Donsker, the sequence of empirical distribution function F̂P
n converges almost surely

to the distribution function FP by Donsker’s Theorem. Lemma 21.2 in van der Vaart (2000) proves that
that F̂P

n is weakly consistent for FP . F̂P
n is weakly consistent for FP if and only if (F̂P

n )
−1 is weakly

consistent for (FP)
−1, which implies that (F̂P

n )
−1 is weakly consistent for (FP)

−1, and hence that Q̂P
t (x)

is weakly consistent for QP
t (x).

Proof of Theorem 1

Proof. This collects the results of this section. We have:

argmin
S:||S||0 ≤K

lim
||∆m||→0
M→∞

ŴQD[P, S,1] d→ argmin
S:||S||0 ≤K

lim
||∆m||→0
M→∞

WQD2[P, S,1]

= argmin
S:||S||0 ≤K

∫ [
fS(x)− fP(x)

]
dx

= argmin
S:||S||0 ≤K

MSECATE(S;X)
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A.2: Additional Simulation Results

IHDP: Hill, 2011

Our second study uses data from the Infant Health and Development Program (IHDP), which has become
a benchmark dataset for assessing the performance of models that estimate heterogeneous treatment effects
(Brooks-Gunn et al., 1992; Hill, 2011).
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Table 2: Error (Wasserstein Distance), Hill (2011)

SPS Best Subsets Ensemble

PATE (In-sample) 0.1325840 0.1131592
PATE (Out-of-Sample) 0.2268514 0.2065952
CATE (In-sample) 0.1278788 0.1150756
CATE (Out-of-Sample) 0.2441207 0.2355789

Twins: Louizos, 2017
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Figure 3: Twins simulation. Blue: SPS, Red: Best Subsets, Black: Oracle
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Table 3: Test error (Wasserstein distance) on Twins dataset, Louizos (2017)

SPS BestSubsetsEnsemble

K = 2 0.0016831510 0.0001232097
K = 3 0.0014473130 0.0006458922
K = 4 0.0014986730 0.0002082345
K = 5 0.0002831783 0.0001110586
K = 6 0.0013974690 0.0003896494
K = 7 0.0023271380 0.0012880440
K = 8 0.0005380903 0.0004933354
K = 9 0.0003607147 0.0001697653

Mean 0.0011001370 0.0004286486

A.3: Comparison with Egami and Lee

My method differs from that in Egami and Lee (2024) in several ways.
First, I study the CATE, in addition to the PATE, which is a distinct problem and a main contribution

of my paper.
Second, for the PATE, the goal of the method is slightly different. They consider the problem of

choosing sites with improved external validity, which in practice means minimizing the probability that
the PATE is not within the convex hull of observed site ATEs.

I study the problem of directly minimizing the MSE subject to a degenerate prior on the contribution
of covariates to treatment effects. This is the optimal approach when covariates are fully informative. I
am somewhat more agnostic about the challenge of external validity, and aim to explore in subsequent
work how to incorporate tools from the distributional robustness literature into the site selection problem.
My approach to improving out-of-sample performance is the ensemble method, which takes a ‘winner-
of-winners’ approach to selecting sites, with the eventual site selection being one that is selected across
multiple subsamples of covariates.

Second, the optimization problems differ: Egami and Lee (2024) propose a convex objective function
with three components: i) minimizing `2 distance between unselected and the weighted combination of
unselected sites ii) a penalty minimizing the distance between selected and unselected sites amd iii) a
penalty term on the weights themselves.

I instead solve the k-means problem, by minimizing the distance between the weighted selection of
sites and the mean vector of the covariates. The goal is to choose sites that well predict the mean of the
covariates, rather than well-predicting the values of not included sites.

To illustrate the difference, imagine that sites vary across one dimension, and that we are interested
in the PATE. The set of sites that are MSE-optimal are simply those closest to the PATE. But the set of
sites that maximize the convex hull of the sites are the extremes, since the convex hull is the full line:
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Figure 4: MSE-optimal Figure 5: Hull-maximization

The point of the penalty term in Egami and Lee (2024) is to ‘shrink’ sites closer to the mean. Their
objective function can therefore be understood as a convex combination of the two extremes presented in
the two images, depending on choice of parameters.

My approach to improving external validity is to opt for the first method, and to induce distribution
shift through resampling covariates, and combining the resulting models.

Thirdly, the implementation of my method benefits from the optimality guarantees, and fast runtimes
of the method of Bertsimas et al. (2015b). In practice, Algorithm 1 has significantly faster runtimes than
SPS.

A.4: Weighted Quantile Discrepancy and Optimal Transport

I briefly note a connection between minimizing the WQD and minimizing the Wasserstein Distance.
The Wasserstein Distance is frequently used in the optimal transport literature as a measure of the

distance between two distributions: it has an intuitive interpretation as the amount of ’probability mass’
that must be shifted from one distribution to another to make them equal (Villani, 2003).

It is defined as follows:

Definition 6 (p-Wasserstein Distance)

WDp(P, S) =
(∫ 1

0
|FP(x)− FS(x)|p dx

) 1
p

We note that the 2-WQD is asymptotically equal to the 2-Wasserstein Distance.

Remark 1
The 2-Wasserstein Distance is defined WD2(P, S) =

(∫ 1
0 |F

P(x)− FP(x)|2 dx
)1/2

.
So we also have that:

argmin
S:||S||0 ≤K

lim
||∆m||→0
M→∞

WQD2[P, S,1] = argmin
S:||S||0 ≤K

WD2(P, S)

Which entails that, asymptotically, a minimizer of the empirical 2-WQD is a minimizer of the 2-
Wasserstein Distance. In other words, if find a subset that minimizes the 2-WQD, we find a subset that
solves the optimal transport problem of finding the subset S that minimizes the transport cost from FS

to FP .
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